lightning/tests/base/model_test_epoch_ends.py

90 lines
3.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC
import torch
from pytorch_lightning.utilities import DistributedType
class TestEpochEndVariations(ABC):
def test_epoch_end(self, outputs):
"""
Called at the end of test epoch to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
# if returned a scalar from test_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
# return torch.stack(outputs).mean()
test_loss_mean = 0
test_acc_mean = 0
for output in outputs:
test_loss = self.get_output_metric(output, "test_loss")
# reduce manually when using dp
if self.trainer._distrib_type == DistributedType.DP:
test_loss = torch.mean(test_loss)
test_loss_mean += test_loss
# reduce manually when using dp
test_acc = self.get_output_metric(output, "test_acc")
if self.trainer._distrib_type == DistributedType.DP:
test_acc = torch.mean(test_acc)
test_acc_mean += test_acc
test_loss_mean /= len(outputs)
test_acc_mean /= len(outputs)
metrics_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean}
result = {"progress_bar": metrics_dict, "log": metrics_dict}
return result
def test_epoch_end__multiple_dataloaders(self, outputs):
"""
Called at the end of test epoch to aggregate outputs
:param outputs: list of individual outputs of each validation step
:return:
"""
# if returned a scalar from test_step, outputs is a list of tensor scalars
# we return just the average in this case (if we want)
# return torch.stack(outputs).mean()
test_loss_mean = 0
test_acc_mean = 0
i = 0
for dl_output in outputs:
for output in dl_output:
test_loss = output["test_loss"]
# reduce manually when using dp
if self.trainer._distrib_type == DistributedType.DP:
test_loss = torch.mean(test_loss)
test_loss_mean += test_loss
# reduce manually when using dp
test_acc = output["test_acc"]
if self.trainer._distrib_type == DistributedType.DP:
test_acc = torch.mean(test_acc)
test_acc_mean += test_acc
i += 1
test_loss_mean /= i
test_acc_mean /= i
tqdm_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean}
result = {"progress_bar": tqdm_dict}
return result