90 lines
3.2 KiB
Python
90 lines
3.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from abc import ABC
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.utilities import DistributedType
|
|
|
|
|
|
class TestEpochEndVariations(ABC):
|
|
def test_epoch_end(self, outputs):
|
|
"""
|
|
Called at the end of test epoch to aggregate outputs
|
|
:param outputs: list of individual outputs of each validation step
|
|
:return:
|
|
"""
|
|
# if returned a scalar from test_step, outputs is a list of tensor scalars
|
|
# we return just the average in this case (if we want)
|
|
# return torch.stack(outputs).mean()
|
|
test_loss_mean = 0
|
|
test_acc_mean = 0
|
|
for output in outputs:
|
|
test_loss = self.get_output_metric(output, "test_loss")
|
|
|
|
# reduce manually when using dp
|
|
if self.trainer._distrib_type == DistributedType.DP:
|
|
test_loss = torch.mean(test_loss)
|
|
test_loss_mean += test_loss
|
|
|
|
# reduce manually when using dp
|
|
test_acc = self.get_output_metric(output, "test_acc")
|
|
if self.trainer._distrib_type == DistributedType.DP:
|
|
test_acc = torch.mean(test_acc)
|
|
|
|
test_acc_mean += test_acc
|
|
|
|
test_loss_mean /= len(outputs)
|
|
test_acc_mean /= len(outputs)
|
|
|
|
metrics_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean}
|
|
result = {"progress_bar": metrics_dict, "log": metrics_dict}
|
|
return result
|
|
|
|
def test_epoch_end__multiple_dataloaders(self, outputs):
|
|
"""
|
|
Called at the end of test epoch to aggregate outputs
|
|
:param outputs: list of individual outputs of each validation step
|
|
:return:
|
|
"""
|
|
# if returned a scalar from test_step, outputs is a list of tensor scalars
|
|
# we return just the average in this case (if we want)
|
|
# return torch.stack(outputs).mean()
|
|
test_loss_mean = 0
|
|
test_acc_mean = 0
|
|
i = 0
|
|
for dl_output in outputs:
|
|
for output in dl_output:
|
|
test_loss = output["test_loss"]
|
|
|
|
# reduce manually when using dp
|
|
if self.trainer._distrib_type == DistributedType.DP:
|
|
test_loss = torch.mean(test_loss)
|
|
test_loss_mean += test_loss
|
|
|
|
# reduce manually when using dp
|
|
test_acc = output["test_acc"]
|
|
if self.trainer._distrib_type == DistributedType.DP:
|
|
test_acc = torch.mean(test_acc)
|
|
|
|
test_acc_mean += test_acc
|
|
i += 1
|
|
|
|
test_loss_mean /= i
|
|
test_acc_mean /= i
|
|
|
|
tqdm_dict = {"test_loss": test_loss_mean, "test_acc": test_acc_mean}
|
|
result = {"progress_bar": tqdm_dict}
|
|
return result
|