lightning/examples/pytorch/hpu/mnist_sample.py

74 lines
2.3 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from jsonargparse import lazy_instance
from lightning_habana import HPUPrecisionPlugin
from torch.nn import functional as F
from lightning.pytorch import LightningModule
from lightning.pytorch.cli import LightningCLI
from lightning.pytorch.demos.mnist_datamodule import MNISTDataModule
class LitClassifier(LightningModule):
def __init__(self):
super().__init__()
self.l1 = torch.nn.Linear(28 * 28, 10)
def forward(self, x):
return torch.relu(self.l1(x.view(x.size(0), -1)))
def training_step(self, batch, batch_idx):
x, y = batch
return F.cross_entropy(self(x), y)
def validation_step(self, batch, batch_idx):
x, y = batch
probs = self(x)
acc = self.accuracy(probs, y)
self.log("val_acc", acc)
def test_step(self, batch, batch_idx):
x, y = batch
logits = self(x)
acc = self.accuracy(logits, y)
self.log("test_acc", acc)
@staticmethod
def accuracy(logits, y):
return torch.sum(torch.eq(torch.argmax(logits, -1), y).to(torch.float32)) / len(y)
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
if __name__ == "__main__":
cli = LightningCLI(
LitClassifier,
MNISTDataModule,
trainer_defaults={
"accelerator": "hpu",
"devices": 1,
"max_epochs": 1,
"plugins": lazy_instance(HPUPrecisionPlugin, precision="16-mixed"),
},
run=False,
save_config_kwargs={"overwrite": True},
)
# Run the model ⚡
cli.trainer.fit(cli.model, datamodule=cli.datamodule)
cli.trainer.validate(cli.model, datamodule=cli.datamodule)
cli.trainer.test(cli.model, datamodule=cli.datamodule)