173 lines
5.4 KiB
Python
173 lines
5.4 KiB
Python
import os
|
|
import sys
|
|
import numpy as np
|
|
from time import sleep
|
|
import torch
|
|
|
|
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
|
|
from pytorch_lightning.models.trainer import Trainer
|
|
from pytorch_lightning.utils.arg_parse import add_default_args
|
|
|
|
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
|
|
|
|
SEED = 2334
|
|
torch.manual_seed(SEED)
|
|
np.random.seed(SEED)
|
|
|
|
# ---------------------
|
|
# DEFINE MODEL HERE
|
|
# ---------------------
|
|
from lightning_module_template import LightningTemplateModel
|
|
# ---------------------
|
|
|
|
"""
|
|
Allows training by using command line arguments
|
|
Run by:
|
|
# TYPE YOUR RUN COMMAND HERE
|
|
"""
|
|
|
|
|
|
def main_local(hparams):
|
|
main(hparams, None, None)
|
|
|
|
|
|
def main(hparams, cluster, results_dict):
|
|
"""
|
|
Main training routine specific for this project
|
|
:param hparams:
|
|
:return:
|
|
"""
|
|
# ------------------------
|
|
# 1 INIT LIGHTNING MODEL
|
|
# ------------------------
|
|
print('loading model...')
|
|
model = LightningTemplateModel(hparams)
|
|
print('model built')
|
|
|
|
# ------------------------
|
|
# 2 INIT TEST TUBE EXP
|
|
# ------------------------
|
|
# when using grid search, it's possible for all models to start at once
|
|
# and use the same test tube experiment version
|
|
relative_node_id = int(os.environ['SLURM_NODEID'])
|
|
sleep(relative_node_id + 1)
|
|
|
|
# init experiment
|
|
exp = Experiment(
|
|
name=hyperparams.experiment_name,
|
|
save_dir=hyperparams.test_tube_save_path,
|
|
autosave=False,
|
|
description='test demo'
|
|
)
|
|
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# ------------------------
|
|
# 3 DEFINE CALLBACKS
|
|
# ------------------------
|
|
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
|
|
early_stop = EarlyStopping(
|
|
monitor='val_acc',
|
|
patience=3,
|
|
verbose=True,
|
|
mode='max'
|
|
)
|
|
|
|
checkpoint = ModelCheckpoint(
|
|
filepath=model_save_path,
|
|
save_best_only=True,
|
|
verbose=True,
|
|
monitor='val_loss',
|
|
mode='min'
|
|
)
|
|
|
|
# ------------------------
|
|
# 4 INIT TRAINER
|
|
# ------------------------
|
|
trainer = Trainer(
|
|
experiment=exp,
|
|
cluster=cluster,
|
|
checkpoint_callback=checkpoint,
|
|
early_stop_callback=early_stop,
|
|
gpus=hparams.gpus,
|
|
nb_gpu_nodes=hyperparams.nb_gpu_nodes
|
|
)
|
|
|
|
# ------------------------
|
|
# 5 START TRAINING
|
|
# ------------------------
|
|
trainer.fit(model)
|
|
|
|
|
|
def optimize_on_cluster(hyperparams):
|
|
# enable cluster training
|
|
# log all scripts to the test tube folder
|
|
cluster = SlurmCluster(
|
|
hyperparam_optimizer=hyperparams,
|
|
log_path=hyperparams.slurm_log_path,
|
|
)
|
|
|
|
# email for cluster coms
|
|
cluster.notify_job_status(email='add_email_here', on_done=True, on_fail=True)
|
|
|
|
# configure cluster
|
|
cluster.per_experiment_nb_gpus = hyperparams.per_experiment_nb_gpus
|
|
cluster.per_experiment_nb_nodes = hyperparams.nb_gpu_nodes
|
|
cluster.job_time = '2:00:00'
|
|
cluster.gpu_type = 'volta'
|
|
cluster.memory_mb_per_node = 0
|
|
|
|
# any modules for code to run in env
|
|
cluster.add_command('source activate lightning')
|
|
|
|
# run only on 32GB voltas
|
|
cluster.add_slurm_cmd(cmd='constraint', value='volta32gb', comment='use 32gb gpus')
|
|
cluster.add_slurm_cmd(cmd='partition', value=hyperparams.gpu_partition, comment='use 32gb gpus')
|
|
|
|
# run hopt
|
|
print('submitting jobs...')
|
|
cluster.optimize_parallel_cluster_gpu(
|
|
main,
|
|
nb_trials=hyperparams.nb_hopt_trials,
|
|
job_name=hyperparams.experiment_name
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
# use default args
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
demo_log_dir = os.path.join(root_dir, 'pt_lightning_demo_logs')
|
|
|
|
checkpoint_dir = os.path.join(demo_log_dir, 'model_weights')
|
|
test_tube_dir = os.path.join(demo_log_dir, 'test_tube_data')
|
|
slurm_out_dir = os.path.join(demo_log_dir, 'slurm_scripts')
|
|
|
|
parent_parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
|
|
|
|
# cluster args not defined inside the model
|
|
parent_parser.add_argument('--gpu_partition', type=str, help='consult your cluster manual')
|
|
|
|
# TODO: make 1 param
|
|
parent_parser.add_argument('--per_experiment_nb_gpus', type=int, help='how many gpus to use in a node')
|
|
parent_parser.add_argument('--gpus', type=str, default='-1', help='how many gpus to use in the node')
|
|
|
|
parent_parser.add_argument('--nb_gpu_nodes', type=int, default=1, help='how many nodes to use in a cluster')
|
|
parent_parser.add_argument('--test_tube_save_path', type=str, default=test_tube_dir, help='where to save logs')
|
|
parent_parser.add_argument('--slurm_log_path', type=str, default=slurm_out_dir, help='where to save slurm meta')
|
|
parent_parser.add_argument('--model_save_path', type=str, default=checkpoint_dir, help='where to save model')
|
|
parent_parser.add_argument('--experiment_name', type=str, default='pt_lightning_exp_a', help='test tube exp name')
|
|
parent_parser.add_argument('--nb_hopt_trials', type=int, default=1, help='how many grid search trials to run')
|
|
|
|
# allow model to overwrite or extend args
|
|
parser = LightningTemplateModel.add_model_specific_args(parent_parser, root_dir)
|
|
hyperparams = parser.parse_args()
|
|
|
|
# ---------------------
|
|
# RUN TRAINING
|
|
# ---------------------
|
|
# run on HPC cluster
|
|
print('RUNNING ON SLURM CLUSTER')
|
|
optimize_on_cluster(hyperparams)
|