60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
import logging
|
|
import os
|
|
from typing import Any, TYPE_CHECKING
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.plugins import DataParallelPlugin
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
if TYPE_CHECKING:
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
|
|
_log = logging.getLogger(__name__)
|
|
|
|
|
|
class GPUAccelerator(Accelerator):
|
|
|
|
def setup(self, trainer: 'Trainer', model: 'LightningModule') -> None:
|
|
"""
|
|
Raises:
|
|
MisconfigurationException:
|
|
If the selected device is not GPU.
|
|
"""
|
|
if "cuda" not in str(self.root_device):
|
|
raise MisconfigurationException(f"Device should be GPU, got {self.root_device} instead")
|
|
self.set_nvidia_flags()
|
|
torch.cuda.set_device(self.root_device)
|
|
return super().setup(trainer, model)
|
|
|
|
def on_train_start(self) -> None:
|
|
# clear cache before training
|
|
# use context because of:
|
|
# https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
|
|
with torch.cuda.device(self.root_device):
|
|
torch.cuda.empty_cache()
|
|
|
|
def on_train_end(self) -> None:
|
|
# clean up memory
|
|
self.model.cpu()
|
|
with torch.cuda.device(self.root_device):
|
|
torch.cuda.empty_cache()
|
|
|
|
@staticmethod
|
|
def set_nvidia_flags() -> None:
|
|
# set the correct cuda visible devices (using pci order)
|
|
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
|
|
all_gpu_ids = ",".join([str(x) for x in range(torch.cuda.device_count())])
|
|
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
|
|
_log.info(f"LOCAL_RANK: {os.getenv('LOCAL_RANK', 0)} - CUDA_VISIBLE_DEVICES: [{devices}]")
|
|
|
|
def to_device(self, batch: Any) -> Any:
|
|
# no need to transfer batch to device in DP mode
|
|
# TODO: Add support to allow batch transfer to device in Lightning for DP mode.
|
|
if not isinstance(self.training_type_plugin, DataParallelPlugin):
|
|
batch = super().to_device(batch)
|
|
|
|
return batch
|