lightning/tests/models/test_sync_batchnorm.py

101 lines
2.7 KiB
Python

import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning import Trainer, seed_everything, LightningModule, TrainResult
from pytorch_lightning.utilities import FLOAT16_EPSILON
from tests.base.datamodules import MNISTDataModule
from tests.base.develop_utils import set_random_master_port
class SyncBNModule(LightningModule):
def __init__(self, gpu_count=1, **kwargs):
super().__init__()
self.gpu_count = gpu_count
self.bn_targets = None
if 'bn_targets' in kwargs:
self.bn_targets = kwargs['bn_targets']
self.linear = nn.Linear(28 * 28, 10)
self.bn_layer = nn.BatchNorm1d(28 * 28)
def forward(self, x, batch_idx):
with torch.no_grad():
out_bn = self.bn_layer(x.view(x.size(0), -1))
if self.bn_targets:
bn_target = self.bn_targets[batch_idx]
# executes on both GPUs
bn_target = bn_target[self.trainer.local_rank::self.gpu_count]
bn_target = bn_target.to(out_bn.device)
assert torch.sum(torch.abs(bn_target - out_bn)) < FLOAT16_EPSILON
out = self.linear(out_bn)
return out, out_bn
def training_step(self, batch, batch_idx):
x, y = batch
y_hat, _ = self(x, batch_idx)
loss = F.cross_entropy(y_hat, y)
return TrainResult(loss)
def configure_optimizers(self):
return torch.optim.Adam(self.linear.parameters(), lr=0.02)
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_sync_batchnorm_ddp(tmpdir):
seed_everything(234)
set_random_master_port()
# define datamodule and dataloader
dm = MNISTDataModule()
dm.prepare_data()
dm.setup(stage=None)
train_dataloader = dm.train_dataloader()
model = SyncBNModule()
bn_outputs = []
# shuffle is false by default
for batch_idx, batch in enumerate(train_dataloader):
x, _ = batch
_, out_bn = model.forward(x, batch_idx)
bn_outputs.append(out_bn)
# get 3 steps
if batch_idx == 2:
break
bn_outputs = [x.cuda() for x in bn_outputs]
# reset datamodule
# batch-size = 16 because 2 GPUs in DDP
dm = MNISTDataModule(batch_size=16, dist_sampler=True)
dm.prepare_data()
dm.setup(stage=None)
model = SyncBNModule(gpu_count=2, bn_targets=bn_outputs)
trainer = Trainer(
gpus=2,
num_nodes=1,
distributed_backend='ddp_spawn',
max_epochs=1,
max_steps=3,
sync_batchnorm=True,
num_sanity_val_steps=0,
replace_sampler_ddp=False,
)
result = trainer.fit(model, dm)
assert result == 1, "Sync batchnorm failing with DDP"