lightning/tests/models/test_onnx.py

142 lines
4.8 KiB
Python

import os
import numpy as np
import onnxruntime
import pytest
import torch
import tests.base.develop_pipelines as tpipes
import tests.base.develop_utils as tutils
from pytorch_lightning import Trainer
from tests.base import EvalModelTemplate
def test_model_saves_with_input_sample(tmpdir):
"""Test that ONNX model saves with input sample and size is greater than 3 MB"""
model = EvalModelTemplate()
trainer = Trainer(max_epochs=1)
trainer.fit(model)
file_path = os.path.join(tmpdir, "model.onnx")
input_sample = torch.randn((1, 28 * 28))
model.to_onnx(file_path, input_sample)
assert os.path.isfile(file_path)
assert os.path.getsize(file_path) > 3e+06
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_model_saves_on_gpu(tmpdir):
"""Test that model saves on gpu"""
model = EvalModelTemplate()
trainer = Trainer(gpus=1, max_epochs=1)
trainer.fit(model)
file_path = os.path.join(tmpdir, "model.onnx")
input_sample = torch.randn((1, 28 * 28))
model.to_onnx(file_path, input_sample)
assert os.path.isfile(file_path)
assert os.path.getsize(file_path) > 3e+06
def test_model_saves_with_example_output(tmpdir):
"""Test that ONNX model saves when provided with example output"""
model = EvalModelTemplate()
trainer = Trainer(max_epochs=1)
trainer.fit(model)
file_path = os.path.join(tmpdir, "model.onnx")
input_sample = torch.randn((1, 28 * 28))
model.eval()
example_outputs = model.forward(input_sample)
model.to_onnx(file_path, input_sample, example_outputs=example_outputs)
assert os.path.exists(file_path) is True
def test_model_saves_with_example_input_array(tmpdir):
"""Test that ONNX model saves with_example_input_array and size is greater than 3 MB"""
model = EvalModelTemplate()
file_path = os.path.join(tmpdir, "model.onnx")
model.to_onnx(file_path)
assert os.path.exists(file_path) is True
assert os.path.getsize(file_path) > 3e+06
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-GPU machine")
def test_model_saves_on_multi_gpu(tmpdir):
"""Test that ONNX model saves on a distributed backend"""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
distributed_backend='ddp_spawn',
progress_bar_refresh_rate=0
)
model = EvalModelTemplate()
tpipes.run_model_test(trainer_options, model)
file_path = os.path.join(tmpdir, "model.onnx")
model.to_onnx(file_path)
assert os.path.exists(file_path) is True
def test_verbose_param(tmpdir, capsys):
"""Test that output is present when verbose parameter is set"""
model = EvalModelTemplate()
file_path = os.path.join(tmpdir, "model.onnx")
model.to_onnx(file_path, verbose=True)
captured = capsys.readouterr()
assert "graph(%" in captured.out
def test_error_if_no_input(tmpdir):
"""Test that an exception is thrown when there is no input tensor"""
model = EvalModelTemplate()
model.example_input_array = None
file_path = os.path.join(tmpdir, "model.onnx")
with pytest.raises(ValueError, match=r'Could not export to ONNX since neither `input_sample` nor'
r' `model.example_input_array` attribute is set.'):
model.to_onnx(file_path)
def test_error_if_input_sample_is_not_tensor(tmpdir):
"""Test that an exception is thrown when there is no input tensor"""
model = EvalModelTemplate()
model.example_input_array = None
file_path = os.path.join(tmpdir, "model.onnx")
input_sample = np.random.randn(1, 28 * 28)
with pytest.raises(ValueError, match=f'Received `input_sample` of type {type(input_sample)}. Expected type is '
f'`Tensor`'):
model.to_onnx(file_path, input_sample)
def test_if_inference_output_is_valid(tmpdir):
"""Test that the output inferred from ONNX model is same as from PyTorch"""
model = EvalModelTemplate()
trainer = Trainer(max_epochs=5)
trainer.fit(model)
model.eval()
with torch.no_grad():
torch_out = model(model.example_input_array)
file_path = os.path.join(tmpdir, "model.onnx")
model.to_onnx(file_path, model.example_input_array, export_params=True)
ort_session = onnxruntime.InferenceSession(file_path)
def to_numpy(tensor):
return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()
# compute ONNX Runtime output prediction
ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(model.example_input_array)}
ort_outs = ort_session.run(None, ort_inputs)
# compare ONNX Runtime and PyTorch results
assert np.allclose(to_numpy(torch_out), ort_outs[0], rtol=1e-03, atol=1e-05)