lightning/tests/test_y_logging.py

193 lines
4.5 KiB
Python

import os
import pickle
import numpy as np
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.testing import LightningTestModel
from pytorch_lightning.logging import LightningLoggerBase, rank_zero_only
from . import testing_utils
RANDOM_FILE_PATHS = list(np.random.randint(12000, 19000, 1000))
ROOT_SEED = 1234
torch.manual_seed(ROOT_SEED)
np.random.seed(ROOT_SEED)
RANDOM_SEEDS = list(np.random.randint(0, 10000, 1000))
def test_testtube_logger():
"""
verify that basic functionality of test tube logger works
"""
reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
def test_testtube_pickle():
"""
Verify that pickling a trainer containing a test tube logger works
"""
reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
logger = testing_utils.get_test_tube_logger(False)
logger.log_hyperparams(hparams)
logger.save()
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
def test_mlflow_logger():
"""
verify that basic functionality of mlflow logger works
"""
reset_seed()
try:
from pytorch_lightning.logging import MLFlowLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
mlflow_dir = os.path.join(root_dir, "mlruns")
logger = MLFlowLogger("test", f"file://{mlflow_dir}")
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
print('result finished')
assert result == 1, "Training failed"
testing_utils.clear_save_dir()
def test_mlflow_pickle():
"""
verify that pickling trainer with mlflow logger works
"""
reset_seed()
try:
from pytorch_lightning.logging import MLFlowLogger
except ModuleNotFoundError:
return
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
root_dir = os.path.dirname(os.path.realpath(__file__))
mlflow_dir = os.path.join(root_dir, "mlruns")
logger = MLFlowLogger("test", f"file://{mlflow_dir}")
trainer_options = dict(
max_nb_epochs=1,
logger=logger
)
trainer = Trainer(**trainer_options)
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
trainer2.logger.log_metrics({"acc": 1.0})
testing_utils.clear_save_dir()
def test_custom_logger(tmpdir):
class CustomLogger(LightningLoggerBase):
def __init__(self):
super().__init__()
self.hparams_logged = None
self.metrics_logged = None
self.finalized = False
@rank_zero_only
def log_hyperparams(self, params):
self.hparams_logged = params
@rank_zero_only
def log_metrics(self, metrics, step_num):
self.metrics_logged = metrics
@rank_zero_only
def finalize(self, status):
self.finalized_status = status
@property
def name(self):
return "name"
@property
def version(self):
return "1"
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
logger = CustomLogger()
trainer_options = dict(
max_nb_epochs=1,
train_percent_check=0.01,
logger=logger,
default_save_path=tmpdir
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training failed"
assert logger.hparams_logged == hparams
assert logger.metrics_logged != {}
assert logger.finalized_status == "success"
def reset_seed():
SEED = RANDOM_SEEDS.pop()
torch.manual_seed(SEED)
np.random.seed(SEED)