505 lines
17 KiB
Python
505 lines
17 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Abstract base class used to build new loggers."""
|
|
|
|
import argparse
|
|
import functools
|
|
import operator
|
|
from abc import ABC, abstractmethod
|
|
from argparse import Namespace
|
|
from functools import wraps
|
|
from typing import Any, Callable, Dict, Iterable, List, Mapping, MutableMapping, Optional, Sequence, Tuple, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.utilities import rank_zero_only
|
|
|
|
|
|
def rank_zero_experiment(fn: Callable) -> Callable:
|
|
""" Returns the real experiment on rank 0 and otherwise the DummyExperiment. """
|
|
@wraps(fn)
|
|
def experiment(self):
|
|
@rank_zero_only
|
|
def get_experiment():
|
|
return fn(self)
|
|
return get_experiment() or DummyExperiment()
|
|
return experiment
|
|
|
|
|
|
class LightningLoggerBase(ABC):
|
|
"""
|
|
Base class for experiment loggers.
|
|
|
|
Args:
|
|
agg_key_funcs:
|
|
Dictionary which maps a metric name to a function, which will
|
|
aggregate the metric values for the same steps.
|
|
agg_default_func:
|
|
Default function to aggregate metric values. If some metric name
|
|
is not presented in the `agg_key_funcs` dictionary, then the
|
|
`agg_default_func` will be used for aggregation.
|
|
|
|
Note:
|
|
The `agg_key_funcs` and `agg_default_func` arguments are used only when
|
|
one logs metrics with the :meth:`~LightningLoggerBase.agg_and_log_metrics` method.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
|
|
agg_default_func: Callable[[Sequence[float]], float] = np.mean
|
|
):
|
|
self._prev_step: int = -1
|
|
self._metrics_to_agg: List[Dict[str, float]] = []
|
|
self._agg_key_funcs = agg_key_funcs if agg_key_funcs else {}
|
|
self._agg_default_func = agg_default_func
|
|
|
|
def update_agg_funcs(
|
|
self,
|
|
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
|
|
agg_default_func: Callable[[Sequence[float]], float] = np.mean
|
|
):
|
|
"""
|
|
Update aggregation methods.
|
|
|
|
Args:
|
|
agg_key_funcs:
|
|
Dictionary which maps a metric name to a function, which will
|
|
aggregate the metric values for the same steps.
|
|
agg_default_func:
|
|
Default function to aggregate metric values. If some metric name
|
|
is not presented in the `agg_key_funcs` dictionary, then the
|
|
`agg_default_func` will be used for aggregation.
|
|
"""
|
|
if agg_key_funcs:
|
|
self._agg_key_funcs.update(agg_key_funcs)
|
|
if agg_default_func:
|
|
self._agg_default_func = agg_default_func
|
|
|
|
@property
|
|
@abstractmethod
|
|
def experiment(self) -> Any:
|
|
"""Return the experiment object associated with this logger."""
|
|
|
|
def _aggregate_metrics(
|
|
self, metrics: Dict[str, float], step: Optional[int] = None
|
|
) -> Tuple[int, Optional[Dict[str, float]]]:
|
|
"""
|
|
Aggregates metrics.
|
|
|
|
Args:
|
|
metrics: Dictionary with metric names as keys and measured quantities as values
|
|
step: Step number at which the metrics should be recorded
|
|
|
|
Returns:
|
|
Step and aggregated metrics. The return value could be ``None``. In such case, metrics
|
|
are added to the aggregation list, but not aggregated yet.
|
|
"""
|
|
# if you still receiving metric from the same step, just accumulate it
|
|
if step == self._prev_step:
|
|
self._metrics_to_agg.append(metrics)
|
|
return step, None
|
|
|
|
# compute the metrics
|
|
agg_step, agg_mets = self._reduce_agg_metrics()
|
|
|
|
# as new step received reset accumulator
|
|
self._metrics_to_agg = [metrics]
|
|
self._prev_step = step
|
|
return agg_step, agg_mets
|
|
|
|
def _reduce_agg_metrics(self):
|
|
"""Aggregate accumulated metrics."""
|
|
# compute the metrics
|
|
if not self._metrics_to_agg:
|
|
agg_mets = None
|
|
elif len(self._metrics_to_agg) == 1:
|
|
agg_mets = self._metrics_to_agg[0]
|
|
else:
|
|
agg_mets = merge_dicts(self._metrics_to_agg, self._agg_key_funcs, self._agg_default_func)
|
|
return self._prev_step, agg_mets
|
|
|
|
def _finalize_agg_metrics(self):
|
|
"""This shall be called before save/close."""
|
|
agg_step, metrics_to_log = self._reduce_agg_metrics()
|
|
self._metrics_to_agg = []
|
|
|
|
if metrics_to_log is not None:
|
|
self.log_metrics(metrics=metrics_to_log, step=agg_step)
|
|
|
|
def agg_and_log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
|
|
"""
|
|
Aggregates and records metrics.
|
|
This method doesn't log the passed metrics instantaneously, but instead
|
|
it aggregates them and logs only if metrics are ready to be logged.
|
|
|
|
Args:
|
|
metrics: Dictionary with metric names as keys and measured quantities as values
|
|
step: Step number at which the metrics should be recorded
|
|
"""
|
|
agg_step, metrics_to_log = self._aggregate_metrics(metrics=metrics, step=step)
|
|
|
|
if metrics_to_log:
|
|
self.log_metrics(metrics=metrics_to_log, step=agg_step)
|
|
|
|
@abstractmethod
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
|
|
"""
|
|
Records metrics.
|
|
This method logs metrics as as soon as it received them. If you want to aggregate
|
|
metrics for one specific `step`, use the
|
|
:meth:`~pytorch_lightning.loggers.base.LightningLoggerBase.agg_and_log_metrics` method.
|
|
|
|
Args:
|
|
metrics: Dictionary with metric names as keys and measured quantities as values
|
|
step: Step number at which the metrics should be recorded
|
|
"""
|
|
pass
|
|
|
|
@staticmethod
|
|
def _convert_params(params: Union[Dict[str, Any], Namespace]) -> Dict[str, Any]:
|
|
# in case converting from namespace
|
|
if isinstance(params, Namespace):
|
|
params = vars(params)
|
|
|
|
if params is None:
|
|
params = {}
|
|
|
|
return params
|
|
|
|
@staticmethod
|
|
def _sanitize_callable_params(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Sanitize callable params dict, e.g. ``{'a': <function_**** at 0x****>} -> {'a': 'function_****'}``.
|
|
|
|
Args:
|
|
params: Dictionary containing the hyperparameters
|
|
|
|
Returns:
|
|
dictionary with all callables sanitized
|
|
"""
|
|
def _sanitize_callable(val):
|
|
# Give them one chance to return a value. Don't go rabbit hole of recursive call
|
|
if isinstance(val, Callable):
|
|
try:
|
|
_val = val()
|
|
if isinstance(_val, Callable):
|
|
return val.__name__
|
|
return _val
|
|
# todo: specify the possible exception
|
|
except Exception:
|
|
return getattr(val, "__name__", None)
|
|
return val
|
|
|
|
return {key: _sanitize_callable(val) for key, val in params.items()}
|
|
|
|
@staticmethod
|
|
def _flatten_dict(params: Dict[Any, Any], delimiter: str = '/') -> Dict[str, Any]:
|
|
"""
|
|
Flatten hierarchical dict, e.g. ``{'a': {'b': 'c'}} -> {'a/b': 'c'}``.
|
|
|
|
Args:
|
|
params: Dictionary containing the hyperparameters
|
|
delimiter: Delimiter to express the hierarchy. Defaults to ``'/'``.
|
|
|
|
Returns:
|
|
Flattened dict.
|
|
|
|
Examples:
|
|
>>> LightningLoggerBase._flatten_dict({'a': {'b': 'c'}})
|
|
{'a/b': 'c'}
|
|
>>> LightningLoggerBase._flatten_dict({'a': {'b': 123}})
|
|
{'a/b': 123}
|
|
>>> LightningLoggerBase._flatten_dict({5: {'a': 123}})
|
|
{'5/a': 123}
|
|
"""
|
|
|
|
def _dict_generator(input_dict, prefixes=None):
|
|
prefixes = prefixes[:] if prefixes else []
|
|
if isinstance(input_dict, MutableMapping):
|
|
for key, value in input_dict.items():
|
|
key = str(key)
|
|
if isinstance(value, (MutableMapping, Namespace)):
|
|
value = vars(value) if isinstance(value, Namespace) else value
|
|
for d in _dict_generator(value, prefixes + [key]):
|
|
yield d
|
|
else:
|
|
yield prefixes + [key, value if value is not None else str(None)]
|
|
else:
|
|
yield prefixes + [input_dict if input_dict is None else str(input_dict)]
|
|
|
|
return {delimiter.join(keys): val for *keys, val in _dict_generator(params)}
|
|
|
|
@staticmethod
|
|
def _sanitize_params(params: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Returns params with non-primitvies converted to strings for logging.
|
|
|
|
>>> params = {"float": 0.3,
|
|
... "int": 1,
|
|
... "string": "abc",
|
|
... "bool": True,
|
|
... "list": [1, 2, 3],
|
|
... "namespace": Namespace(foo=3),
|
|
... "layer": torch.nn.BatchNorm1d}
|
|
>>> import pprint
|
|
>>> pprint.pprint(LightningLoggerBase._sanitize_params(params)) # doctest: +NORMALIZE_WHITESPACE
|
|
{'bool': True,
|
|
'float': 0.3,
|
|
'int': 1,
|
|
'layer': "<class 'torch.nn.modules.batchnorm.BatchNorm1d'>",
|
|
'list': '[1, 2, 3]',
|
|
'namespace': 'Namespace(foo=3)',
|
|
'string': 'abc'}
|
|
"""
|
|
for k in params.keys():
|
|
# convert relevant np scalars to python types first (instead of str)
|
|
if isinstance(params[k], (np.bool_, np.integer, np.floating)):
|
|
params[k] = params[k].item()
|
|
elif type(params[k]) not in [bool, int, float, str, torch.Tensor]:
|
|
params[k] = str(params[k])
|
|
return params
|
|
|
|
@abstractmethod
|
|
def log_hyperparams(self, params: argparse.Namespace):
|
|
"""
|
|
Record hyperparameters.
|
|
|
|
Args:
|
|
params: :class:`~argparse.Namespace` containing the hyperparameters
|
|
"""
|
|
|
|
def log_graph(self, model: LightningModule, input_array=None) -> None:
|
|
"""
|
|
Record model graph
|
|
|
|
Args:
|
|
model: lightning model
|
|
input_array: input passes to `model.forward`
|
|
"""
|
|
pass
|
|
|
|
def save(self) -> None:
|
|
"""Save log data."""
|
|
self._finalize_agg_metrics()
|
|
|
|
def finalize(self, status: str) -> None:
|
|
"""
|
|
Do any processing that is necessary to finalize an experiment.
|
|
|
|
Args:
|
|
status: Status that the experiment finished with (e.g. success, failed, aborted)
|
|
"""
|
|
self.save()
|
|
|
|
def close(self) -> None:
|
|
"""Do any cleanup that is necessary to close an experiment."""
|
|
self.save()
|
|
|
|
@property
|
|
def save_dir(self) -> Optional[str]:
|
|
"""
|
|
Return the root directory where experiment logs get saved, or `None` if the logger does not
|
|
save data locally.
|
|
"""
|
|
return None
|
|
|
|
@property
|
|
@abstractmethod
|
|
def name(self) -> str:
|
|
"""Return the experiment name."""
|
|
|
|
@property
|
|
@abstractmethod
|
|
def version(self) -> Union[int, str]:
|
|
"""Return the experiment version."""
|
|
|
|
def _add_prefix(self, metrics: Dict[str, float]):
|
|
if self._prefix:
|
|
metrics = {f'{self._prefix}{self.LOGGER_JOIN_CHAR}{k}': v for k, v in metrics.items()}
|
|
|
|
return metrics
|
|
|
|
|
|
class LoggerCollection(LightningLoggerBase):
|
|
"""
|
|
The :class:`LoggerCollection` class is used to iterate all logging actions over
|
|
the given `logger_iterable`.
|
|
|
|
Args:
|
|
logger_iterable: An iterable collection of loggers
|
|
"""
|
|
|
|
def __init__(self, logger_iterable: Iterable[LightningLoggerBase]):
|
|
super().__init__()
|
|
self._logger_iterable = logger_iterable
|
|
|
|
def __getitem__(self, index: int) -> LightningLoggerBase:
|
|
return [logger for logger in self._logger_iterable][index]
|
|
|
|
def update_agg_funcs(
|
|
self,
|
|
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
|
|
agg_default_func: Callable[[Sequence[float]], float] = np.mean
|
|
):
|
|
for logger in self._logger_iterable:
|
|
logger.update_agg_funcs(agg_key_funcs, agg_default_func)
|
|
|
|
@property
|
|
def experiment(self) -> List[Any]:
|
|
return [logger.experiment for logger in self._logger_iterable]
|
|
|
|
def agg_and_log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
|
|
for logger in self._logger_iterable:
|
|
logger.agg_and_log_metrics(metrics, step)
|
|
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.log_metrics(metrics, step)
|
|
|
|
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.log_hyperparams(params)
|
|
|
|
def log_graph(self, model: LightningModule, input_array=None) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.log_graph(model, input_array)
|
|
|
|
def save(self) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.save()
|
|
|
|
def finalize(self, status: str) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.finalize(status)
|
|
|
|
def close(self) -> None:
|
|
for logger in self._logger_iterable:
|
|
logger.close()
|
|
|
|
@property
|
|
def save_dir(self) -> Optional[str]:
|
|
# Checkpoints should be saved to default / chosen location when using multiple loggers
|
|
return None
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return '_'.join([str(logger.name) for logger in self._logger_iterable])
|
|
|
|
@property
|
|
def version(self) -> str:
|
|
return '_'.join([str(logger.version) for logger in self._logger_iterable])
|
|
|
|
|
|
class DummyExperiment(object):
|
|
""" Dummy experiment """
|
|
def nop(*args, **kw):
|
|
pass
|
|
|
|
def __getattr__(self, _):
|
|
return self.nop
|
|
|
|
def __getitem__(self, idx):
|
|
# enables self.logger[0].experiment.add_image
|
|
# and self.logger.experiment[0].add_image(...)
|
|
return self
|
|
|
|
|
|
class DummyLogger(LightningLoggerBase):
|
|
""" Dummy logger for internal use. Is usefull if we want to disable users
|
|
logger for a feature, but still secure that users code can run """
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._experiment = DummyExperiment()
|
|
|
|
@property
|
|
def experiment(self):
|
|
return self._experiment
|
|
|
|
@rank_zero_only
|
|
def log_metrics(self, metrics, step):
|
|
pass
|
|
|
|
@rank_zero_only
|
|
def log_hyperparams(self, params):
|
|
pass
|
|
|
|
@property
|
|
def name(self):
|
|
pass
|
|
|
|
@property
|
|
def version(self):
|
|
pass
|
|
|
|
def __getitem__(self, idx):
|
|
return self
|
|
|
|
|
|
def merge_dicts(
|
|
dicts: Sequence[Mapping],
|
|
agg_key_funcs: Optional[Mapping[str, Callable[[Sequence[float]], float]]] = None,
|
|
default_func: Callable[[Sequence[float]], float] = np.mean
|
|
) -> Dict:
|
|
"""
|
|
Merge a sequence with dictionaries into one dictionary by aggregating the
|
|
same keys with some given function.
|
|
|
|
Args:
|
|
dicts:
|
|
Sequence of dictionaries to be merged.
|
|
agg_key_funcs:
|
|
Mapping from key name to function. This function will aggregate a
|
|
list of values, obtained from the same key of all dictionaries.
|
|
If some key has no specified aggregation function, the default one
|
|
will be used. Default is: ``None`` (all keys will be aggregated by the
|
|
default function).
|
|
default_func:
|
|
Default function to aggregate keys, which are not presented in the
|
|
`agg_key_funcs` map.
|
|
|
|
Returns:
|
|
Dictionary with merged values.
|
|
|
|
Examples:
|
|
>>> import pprint
|
|
>>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1, 'd': {'d1': 1, 'd3': 3}}
|
|
>>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1, 'd': {'d1': 2, 'd2': 3}}
|
|
>>> d3 = {'a': 1.1, 'v': 2.3, 'd': {'d3': 3, 'd4': {'d5': 1}}}
|
|
>>> dflt_func = min
|
|
>>> agg_funcs = {'a': np.mean, 'v': max, 'd': {'d1': sum}}
|
|
>>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func))
|
|
{'a': 1.3,
|
|
'b': 2.0,
|
|
'c': 1,
|
|
'd': {'d1': 3, 'd2': 3, 'd3': 3, 'd4': {'d5': 1}},
|
|
'v': 2.3}
|
|
"""
|
|
agg_key_funcs = agg_key_funcs or dict()
|
|
keys = list(functools.reduce(operator.or_, [set(d.keys()) for d in dicts]))
|
|
d_out = {}
|
|
for k in keys:
|
|
fn = agg_key_funcs.get(k)
|
|
values_to_agg = [v for v in [d_in.get(k) for d_in in dicts] if v is not None]
|
|
|
|
if isinstance(values_to_agg[0], dict):
|
|
d_out[k] = merge_dicts(values_to_agg, fn, default_func)
|
|
else:
|
|
d_out[k] = (fn or default_func)(values_to_agg)
|
|
|
|
return d_out
|