lightning/pytorch_lightning/trainer/training_tricks.py

350 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import os
from abc import ABC, abstractmethod
from typing import Optional
import torch
from torch import Tensor
from pytorch_lightning import _logger as log
from pytorch_lightning.callbacks import GradientAccumulationScheduler
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.loggers.base import DummyLogger
from pytorch_lightning.utilities import AMPType, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.memory import is_oom_error, garbage_collection_cuda
from pytorch_lightning.utilities.parsing import lightning_hasattr, lightning_getattr, lightning_setattr
try:
from apex import amp
except ImportError:
amp = None
EPSILON = 1e-6
EPSILON_FP16 = 1e-5
class TrainerTrainingTricksMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
gradient_clip_val: ...
precision: int
default_root_dir: str
progress_bar_callback: ...
on_gpu: bool
amp_backend: AMPType
@abstractmethod
def get_model(self) -> LightningModule:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def save_checkpoint(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def restore(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def fit(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
def clip_gradients(self, optimizer):
# this code is a modification of torch.nn.utils.clip_grad_norm_
# with TPU support based on https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
if self.gradient_clip_val <= 0:
return
model = self.get_model()
if self.amp_backend == AMPType.APEX:
parameters = amp.master_params(optimizer)
else:
parameters = model.parameters()
max_norm = float(self.gradient_clip_val)
norm_type = float(2.0)
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
if norm_type == math.inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
device = parameters[0].device
out = torch.empty(len(parameters), device=device)
for i, p in enumerate(parameters):
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
total_norm = torch.norm(out, norm_type)
eps = EPSILON_FP16 if self.precision == 16 else EPSILON
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
for p in parameters:
p.grad.data.mul_(clip_coef.to(p.grad.data.device))
def print_nan_gradients(self) -> None:
model = self.get_model()
for param in model.parameters():
if (param.grad is not None) and torch.isnan(param.grad.float()).any():
log.info(param, param.grad)
def detect_nan_tensors(self, loss: Tensor) -> None:
model = self.get_model()
# check if loss is nan
if not torch.isfinite(loss).all():
raise ValueError(
'The loss returned in `training_step` is nan or inf.'
)
# check if a network weight is nan
for name, param in model.named_parameters():
if not torch.isfinite(param).all():
self.print_nan_gradients()
raise ValueError(
f'Detected nan and/or inf values in `{name}`.'
' Check your forward pass for numerically unstable operations.'
)
def configure_accumulated_gradients(self, accumulate_grad_batches):
if isinstance(accumulate_grad_batches, dict):
self.accumulation_scheduler = GradientAccumulationScheduler(accumulate_grad_batches)
elif isinstance(accumulate_grad_batches, int):
schedule = {0: accumulate_grad_batches}
self.accumulation_scheduler = GradientAccumulationScheduler(schedule)
else:
raise TypeError("Gradient accumulation supports only int and dict types")
def scale_batch_size(self,
model: LightningModule,
mode: str = 'power',
steps_per_trial: int = 3,
init_val: int = 2,
max_trials: int = 25,
batch_arg_name: str = 'batch_size'):
r"""
Will iteratively try to find the largest batch size for a given model
that does not give an out of memory (OOM) error.
Args:
model: Model to fit.
mode: string setting the search mode. Either `power` or `binsearch`.
If mode is `power` we keep multiplying the batch size by 2, until
we get an OOM error. If mode is 'binsearch', we will initially
also keep multiplying by 2 and after encountering an OOM error
do a binary search between the last successful batch size and the
batch size that failed.
steps_per_trial: number of steps to run with a given batch size.
Idealy 1 should be enough to test if a OOM error occurs,
however in practise a few are needed
init_val: initial batch size to start the search with
max_trials: max number of increase in batch size done before
algorithm is terminated
"""
if not lightning_hasattr(model, batch_arg_name):
raise MisconfigurationException(
f'Field {batch_arg_name} not found in both `model` and `model.hparams`')
if hasattr(model, batch_arg_name) and hasattr(model, "hparams") and batch_arg_name in model.hparams:
rank_zero_warn(
f'Field `model.{batch_arg_name}` and `model.hparams.{batch_arg_name}` are mutually exclusive!'
f' `model.{batch_arg_name}` will be used as the initial batch size for scaling.'
f' If this is not the intended behavior, please remove either one.'
)
if hasattr(model.train_dataloader, 'patch_loader_code'):
raise MisconfigurationException('The batch scaling feature cannot be used with dataloaders'
' passed directly to `.fit()`. Please disable the feature or'
' incorporate the dataloader into the model.')
# Arguments we adjust during the batch size finder, save for restoring
self.__scale_batch_dump_params()
# Set to values that are required by the algorithm
self.__scale_batch_reset_params(model, steps_per_trial)
# Save initial model, that is loaded after batch size is found
save_path = os.path.join(self.default_root_dir, 'temp_model.ckpt')
self.save_checkpoint(str(save_path))
if self.progress_bar_callback:
self.progress_bar_callback.disable()
# Initially we just double in size until an OOM is encountered
new_size = _adjust_batch_size(self, value=init_val) # initially set to init_val
if mode == 'power':
new_size = _run_power_scaling(self, model, new_size, batch_arg_name, max_trials)
elif mode == 'binsearch':
new_size = _run_binsearch_scaling(self, model, new_size, batch_arg_name, max_trials)
else:
raise ValueError('mode in method `scale_batch_size` can only be `power` or `binsearch')
garbage_collection_cuda()
log.info(f'Finished batch size finder, will continue with full run using batch size {new_size}')
# Restore initial state of model
self.restore(str(save_path), on_gpu=self.on_gpu)
os.remove(save_path)
# Finish by resetting variables so trainer is ready to fit model
self.__scale_batch_restore_params()
if self.progress_bar_callback:
self.progress_bar_callback.enable()
return new_size
def __scale_batch_dump_params(self):
# Prevent going into infinite loop
self.__dumped_params = {
'max_steps': self.max_steps,
'weights_summary': self.weights_summary,
'logger': self.logger,
'callbacks': self.callbacks,
'checkpoint_callback': self.checkpoint_callback,
'early_stop_callback': self.early_stop_callback,
'auto_scale_batch_size': self.auto_scale_batch_size,
'limit_train_batches': self.limit_train_batches,
'model': self.model,
}
def __scale_batch_reset_params(self, model, steps_per_trial):
self.auto_scale_batch_size = None # prevent recursion
self.max_steps = steps_per_trial # take few steps
self.weights_summary = None # not needed before full run
self.logger = DummyLogger()
self.callbacks = [] # not needed before full run
self.checkpoint_callback = False # required for saving
self.early_stop_callback = None
self.limit_train_batches = 1.0
self.optimizers, self.schedulers = [], [] # required for saving
self.model = model # required for saving
def __scale_batch_restore_params(self):
self.max_steps = self.__dumped_params['max_steps']
self.weights_summary = self.__dumped_params['weights_summary']
self.logger = self.__dumped_params['logger']
self.callbacks = self.__dumped_params['callbacks']
self.checkpoint_callback = self.__dumped_params['checkpoint_callback']
self.auto_scale_batch_size = self.__dumped_params['auto_scale_batch_size']
self.early_stop_callback = self.__dumped_params['early_stop_callback']
self.limit_train_batches = self.__dumped_params['limit_train_batches']
self.model = self.__dumped_params['model']
del self.__dumped_params
def _adjust_batch_size(trainer,
batch_arg_name: str = 'batch_size',
factor: float = 1.0,
value: Optional[int] = None,
desc: str = None):
""" Function for adjusting the batch size. It is expected that the user
has provided a model that has a hparam field called `batch_size` i.e.
`model.hparams.batch_size` should exist.
Args:
trainer: instance of pytorch_lightning.Trainer
batch_arg_name: field where batch_size is stored in `model.hparams`
factor: value which the old batch size is multiplied by to get the
new batch size
value: if a value is given, will override the batch size with this value.
Note that the value of `factor` will not have an effect in this case
desc: either `succeeded` or `failed`. Used purely for logging
"""
model = trainer.get_model()
batch_size = lightning_getattr(model, batch_arg_name)
if value:
lightning_setattr(model, batch_arg_name, value)
new_size = value
if desc:
log.info(f'Batch size {batch_size} {desc}, trying batch size {new_size}')
else:
new_size = int(batch_size * factor)
if desc:
log.info(f'Batch size {batch_size} {desc}, trying batch size {new_size}')
lightning_setattr(model, batch_arg_name, new_size)
return new_size
def _run_power_scaling(trainer, model, new_size, batch_arg_name, max_trials):
""" Batch scaling mode where the size is doubled at each iteration until an
OOM error is encountered. """
for _ in range(max_trials):
garbage_collection_cuda()
trainer.global_step = 0 # reset after each try
try:
# Try fit
trainer.fit(model)
# Double in size
new_size = _adjust_batch_size(trainer, batch_arg_name, factor=2.0, desc='succeeded')
except RuntimeError as exception:
# Only these errors should trigger an adjustment
if is_oom_error(exception):
# If we fail in power mode, half the size and return
garbage_collection_cuda()
new_size = _adjust_batch_size(trainer, batch_arg_name, factor=0.5, desc='failed')
break
else:
raise # some other error not memory related
return new_size
def _run_binsearch_scaling(trainer, model, new_size, batch_arg_name, max_trials):
""" Batch scaling mode where the size is initially is doubled at each iteration
until an OOM error is encountered. Hereafter, the batch size is further
refined using a binary search """
high = None
count = 0
while True:
garbage_collection_cuda()
trainer.global_step = 0 # reset after each try
try:
# Try fit
trainer.fit(model)
count += 1
if count > max_trials:
break
# Double in size
low = new_size
if high:
if high - low <= 1:
break
midval = (high + low) // 2
new_size = _adjust_batch_size(trainer, batch_arg_name, value=midval, desc='succeeded')
else:
new_size = _adjust_batch_size(trainer, batch_arg_name, factor=2.0, desc='succeeded')
except RuntimeError as exception:
# Only these errors should trigger an adjustment
if is_oom_error(exception):
# If we fail in power mode, half the size and return
garbage_collection_cuda()
high = new_size
midval = (high + low) // 2
new_size = _adjust_batch_size(trainer, value=midval, desc='failed')
if high - low <= 1:
break
else:
raise # some other error not memory related
return new_size