136 lines
4.5 KiB
Python
136 lines
4.5 KiB
Python
from pytorch_lightning import Trainer
|
|
from tests.base.deterministic_model import DeterministicModel
|
|
|
|
|
|
def test_trainingstep_dict(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
model = DeterministicModel()
|
|
model.training_step = model.training_step_dict_return
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(fast_dev_run=True, weights_summary=None)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert not model.training_step_end_called
|
|
assert not model.training_epoch_end_called
|
|
|
|
# make sure training outputs what is expected
|
|
for batch_idx, batch in enumerate(model.train_dataloader()):
|
|
break
|
|
|
|
out = trainer.run_training_batch(batch, batch_idx)
|
|
assert out.signal == 0
|
|
assert out.batch_log_metrics['log_acc1'] == 12.0
|
|
assert out.batch_log_metrics['log_acc2'] == 7.0
|
|
|
|
pbar_metrics = out.training_step_output_for_epoch_end['pbar_on_batch_end']
|
|
assert pbar_metrics['pbar_acc1'] == 17.0
|
|
assert pbar_metrics['pbar_acc2'] == 19.0
|
|
|
|
|
|
def training_step_with_step_end(tmpdir):
|
|
"""
|
|
Checks train_step + training_step_end
|
|
"""
|
|
model = DeterministicModel()
|
|
model.training_step = model.training_step_for_step_end_dict
|
|
model.training_step_end = model.training_step_end_dict
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(fast_dev_run=True, weights_summary=None)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert model.training_step_end_called
|
|
assert not model.training_epoch_end_called
|
|
|
|
# make sure training outputs what is expected
|
|
for batch_idx, batch in enumerate(model.train_dataloader()):
|
|
break
|
|
|
|
out = trainer.run_training_batch(batch, batch_idx)
|
|
assert out.signal == 0
|
|
assert out.batch_log_metrics['log_acc1'] == 12.0
|
|
assert out.batch_log_metrics['log_acc2'] == 7.0
|
|
|
|
pbar_metrics = out.training_step_output_for_epoch_end['pbar_on_batch_end']
|
|
assert pbar_metrics['pbar_acc1'] == 17.0
|
|
assert pbar_metrics['pbar_acc2'] == 19.0
|
|
|
|
|
|
def test_full_training_loop_dict(tmpdir):
|
|
"""
|
|
Checks train_step + training_step_end + training_epoch_end
|
|
"""
|
|
model = DeterministicModel()
|
|
model.training_step = model.training_step_for_step_end_dict
|
|
model.training_step_end = model.training_step_end_dict
|
|
model.training_epoch_end = model.training_epoch_end_dict
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(max_epochs=1, weights_summary=None)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert model.training_step_end_called
|
|
assert model.training_epoch_end_called
|
|
|
|
# assert epoch end metrics were added
|
|
assert trainer.callback_metrics['epoch_end_log_1'] == 178
|
|
assert trainer.progress_bar_metrics['epoch_end_pbar_1'] == 234
|
|
|
|
# make sure training outputs what is expected
|
|
for batch_idx, batch in enumerate(model.train_dataloader()):
|
|
break
|
|
|
|
out = trainer.run_training_batch(batch, batch_idx)
|
|
assert out.signal == 0
|
|
assert out.batch_log_metrics['log_acc1'] == 12.0
|
|
assert out.batch_log_metrics['log_acc2'] == 7.0
|
|
|
|
pbar_metrics = out.training_step_output_for_epoch_end['pbar_on_batch_end']
|
|
assert pbar_metrics['pbar_acc1'] == 17.0
|
|
assert pbar_metrics['pbar_acc2'] == 19.0
|
|
|
|
|
|
def test_train_step_epoch_end(tmpdir):
|
|
"""
|
|
Checks train_step + training_epoch_end (NO training_step_end)
|
|
"""
|
|
model = DeterministicModel()
|
|
model.training_step = model.training_step_dict_return
|
|
model.training_step_end = None
|
|
model.training_epoch_end = model.training_epoch_end_dict
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(max_epochs=1, weights_summary=None)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert not model.training_step_end_called
|
|
assert model.training_epoch_end_called
|
|
|
|
# assert epoch end metrics were added
|
|
assert trainer.callback_metrics['epoch_end_log_1'] == 178
|
|
assert trainer.progress_bar_metrics['epoch_end_pbar_1'] == 234
|
|
|
|
# make sure training outputs what is expected
|
|
for batch_idx, batch in enumerate(model.train_dataloader()):
|
|
break
|
|
|
|
out = trainer.run_training_batch(batch, batch_idx)
|
|
assert out.signal == 0
|
|
assert out.batch_log_metrics['log_acc1'] == 12.0
|
|
assert out.batch_log_metrics['log_acc2'] == 7.0
|
|
|
|
pbar_metrics = out.training_step_output_for_epoch_end['pbar_on_batch_end']
|
|
assert pbar_metrics['pbar_acc1'] == 17.0
|
|
assert pbar_metrics['pbar_acc2'] == 19.0
|