93 lines
2.5 KiB
Python
93 lines
2.5 KiB
Python
import os
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import Callback
|
|
from pytorch_lightning.plugins import ApexMixedPrecisionPlugin
|
|
from pytorch_lightning.utilities import _APEX_AVAILABLE
|
|
from tests.helpers.boring_model import BoringModel
|
|
|
|
|
|
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_LOCALID": "0"
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@pytest.mark.parametrize(
|
|
['ddp_backend', 'gpus', 'num_processes'],
|
|
[('ddp_cpu', None, 2), ('ddp', 2, 0), ('ddp2', 2, 0), ('ddp_spawn', 2, 0)],
|
|
)
|
|
def test_amp_choice_default_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.precision_plugin, ApexMixedPrecisionPlugin)
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
amp_backend='apex',
|
|
gpus=gpus,
|
|
num_processes=num_processes,
|
|
accelerator=ddp_backend,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@pytest.mark.skipif(not _APEX_AVAILABLE, reason="test requires apex")
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_LOCALID": "0"
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@pytest.mark.parametrize(
|
|
['ddp_backend', 'gpus', 'num_processes'],
|
|
[('ddp_cpu', None, 2), ('ddp', 2, 0), ('ddp2', 2, 0), ('ddp_spawn', 2, 0)],
|
|
)
|
|
def test_amp_choice_custom_ddp_cpu(tmpdir, ddp_backend, gpus, num_processes):
|
|
|
|
class MyApexPlugin(ApexMixedPrecisionPlugin):
|
|
pass
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.precision_plugin, MyApexPlugin)
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
precision=16,
|
|
amp_backend='apex',
|
|
gpus=gpus,
|
|
num_processes=num_processes,
|
|
accelerator=ddp_backend,
|
|
plugins=[MyApexPlugin(amp_level="O2")],
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|