lightning/benchmarks/test_trainer_parity.py

154 lines
4.2 KiB
Python

import os
import time
import numpy as np
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
import tests.base.utils as tutils
from pytorch_lightning import Trainer, LightningModule, seed_everything
from tests.base.datasets import TrialMNIST
class ParityMNIST(LightningModule):
def __init__(self):
super(ParityMNIST, self).__init__()
self.c_d1 = nn.Linear(in_features=28 * 28, out_features=128)
self.c_d1_bn = nn.BatchNorm1d(128)
self.c_d1_drop = nn.Dropout(0.3)
self.c_d2 = nn.Linear(in_features=128, out_features=10)
def forward(self, x):
x = x.view(x.size(0), -1)
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
return x
def training_step(self, batch, batch_nb):
x, y = batch
y_hat = self(x)
loss = F.cross_entropy(y_hat, y)
return {'loss': loss}
def configure_optimizers(self):
return torch.optim.Adam(self.parameters(), lr=0.02)
def train_dataloader(self):
return DataLoader(TrialMNIST(train=True,
download=True,
num_samples=500,
digits=list(range(5))),
batch_size=128)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_pytorch_parity(tmpdir):
"""
Verify that the same pytorch and lightning models achieve the same results
:param tmpdir:
:return:
"""
num_epochs = 2
num_rums = 3
lightning_outs, pl_times = lightning_loop(ParityMNIST, num_rums, num_epochs)
manual_outs, pt_times = vanilla_loop(ParityMNIST, num_rums, num_epochs)
# make sure the losses match exactly to 5 decimal places
for pl_out, pt_out in zip(lightning_outs, manual_outs):
np.testing.assert_almost_equal(pl_out, pt_out, 5)
# the fist run initialize dataset (download & filter)
tutils.assert_speed_parity(pl_times[1:], pt_times[1:], num_epochs)
def vanilla_loop(MODEL, num_runs=10, num_epochs=10):
"""
Returns an array with the last loss from each epoch for each run
"""
device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
errors = []
times = []
torch.backends.cudnn.deterministic = True
for i in range(num_runs):
time_start = time.perf_counter()
# set seed
seed = i
seed_everything(seed)
# init model parts
model = MODEL()
dl = model.train_dataloader()
optimizer = model.configure_optimizers()
# model to GPU
model = model.to(device)
epoch_losses = []
for epoch in range(num_epochs):
# run through full training set
for j, batch in enumerate(dl):
x, y = batch
x = x.cuda(0)
y = y.cuda(0)
batch = (x, y)
loss_dict = model.training_step(batch, j)
loss = loss_dict['loss']
loss.backward()
optimizer.step()
optimizer.zero_grad()
# track last epoch loss
epoch_losses.append(loss.item())
time_end = time.perf_counter()
times.append(time_end - time_start)
errors.append(epoch_losses[-1])
return errors, times
def lightning_loop(MODEL, num_runs=10, num_epochs=10):
errors = []
times = []
for i in range(num_runs):
time_start = time.perf_counter()
# set seed
seed = i
seed_everything(seed)
model = MODEL()
# init model parts
trainer = Trainer(
max_epochs=num_epochs,
progress_bar_refresh_rate=0,
weights_summary=None,
gpus=1,
early_stop_callback=False,
checkpoint_callback=False,
deterministic=True,
)
trainer.fit(model)
final_loss = trainer.running_loss.last().item()
errors.append(final_loss)
time_end = time.perf_counter()
times.append(time_end - time_start)
return errors, times