lightning/examples/new_project_templates/single_gpu_node_template.py

113 lines
3.2 KiB
Python

"""
Runs a model on a single node across N-gpus.
"""
import os
import sys
import numpy as np
from time import sleep
import torch
from test_tube import HyperOptArgumentParser, Experiment, SlurmCluster
from pytorch_lightning.models.trainer import Trainer
from pytorch_lightning.utils.arg_parse import add_default_args
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
SEED = 2334
torch.manual_seed(SEED)
np.random.seed(SEED)
from lightning_module_template import LightningTemplateModel
def main(hparams):
"""
Main training routine specific for this project
:param hparams:
:return:
"""
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
print('loading model...')
model = LightningTemplateModel(hparams)
print('model built')
# ------------------------
# 2 INIT TEST TUBE EXP
# ------------------------
# init experiment
exp = Experiment(
name=hyperparams.experiment_name,
save_dir=hyperparams.test_tube_save_path,
autosave=False,
description='test demo'
)
exp.argparse(hparams)
exp.save()
# ------------------------
# 3 DEFINE CALLBACKS
# ------------------------
model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
early_stop = EarlyStopping(
monitor='val_acc',
patience=3,
verbose=True,
mode='max'
)
checkpoint = ModelCheckpoint(
filepath=model_save_path,
save_best_only=True,
verbose=True,
monitor='val_loss',
mode='min'
)
# ------------------------
# 4 INIT TRAINER
# ------------------------
trainer = Trainer(
experiment=exp,
checkpoint_callback=checkpoint,
early_stop_callback=early_stop,
gpus=hparams.gpus,
)
# ------------------------
# 5 START TRAINING
# ------------------------
trainer.fit(model)
if __name__ == '__main__':
# dirs
root_dir = os.path.dirname(os.path.realpath(__file__))
demo_log_dir = os.path.join(root_dir, 'pt_lightning_demo_logs')
checkpoint_dir = os.path.join(demo_log_dir, 'model_weights')
test_tube_dir = os.path.join(demo_log_dir, 'test_tube_data')
# although we user hyperOptParser, we are using it only as argparse right now
parent_parser = HyperOptArgumentParser(strategy='grid_search', add_help=False)
# gpu args
parent_parser.add_argument('--gpus', type=str, default='-1', help='how many gpus to use in the node')
parent_parser.add_argument('--test_tube_save_path', type=str, default=test_tube_dir, help='where to save logs')
parent_parser.add_argument('--model_save_path', type=str, default=checkpoint_dir, help='where to save model')
parent_parser.add_argument('--experiment_name', type=str, default='pt_lightning_exp_a', help='test tube exp name')
# allow model to overwrite or extend args
parser = LightningTemplateModel.add_model_specific_args(parent_parser, root_dir)
hyperparams = parser.parse_args()
# ---------------------
# RUN TRAINING
# ---------------------
# run on HPC cluster
print(f'RUNNING INTERACTIVE MODE ON GPUS. gpu ids: {hyperparams.gpus}')
main(hyperparams)