lightning/pytorch_lightning/callbacks/pt_callbacks.py

407 lines
14 KiB
Python

"""
Callbacks
=========
Callbacks supported by Lightning
"""
import logging
import os
import shutil
import warnings
import numpy as np
from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel
class Callback(object):
r"""Abstract base class used to build new callbacks.
"""
def __init__(self):
self.validation_data = None
self.model = None
def set_params(self, params):
self.params = params
def set_model(self, model):
if type(model) is LightningDistributedDataParallel:
model = model.module
self.model = model
def on_epoch_begin(self, epoch, logs=None):
"""
called when the epoch begins
Args:
epoch (int): current epoch
logs (dict): key-value pairs of quantities to monitor
Example:
on_epoch_begin(epoch=2, logs={'val_loss': 0.2})
"""
pass
def on_epoch_end(self, epoch, logs=None):
pass
def on_batch_begin(self, batch, logs=None):
"""
called when the batch starts.
Args:
batch (Tensor): current batch tensor
logs (dict): key-value pairs of quantities to monitor
"""
pass
def on_batch_end(self, batch, logs=None):
pass
def on_train_begin(self, logs=None):
pass
def on_train_end(self, logs=None):
pass
class EarlyStopping(Callback):
r"""
Stop training when a monitored quantity has stopped improving.
Args:
monitor (str): quantity to be monitored.
min_delta (float): minimum change in the monitored quantity
to qualify as an improvement, i.e. an absolute
change of less than min_delta, will count as no
improvement.
patience (int): number of epochs with no improvement
after which training will be stopped.
verbose (bool): verbosity mode.
mode (str): one of {auto, min, max}. In `min` mode,
training will stop when the quantity
monitored has stopped decreasing; in `max`
mode it will stop when the quantity
monitored has stopped increasing; in `auto`
mode, the direction is automatically inferred
from the name of the monitored quantity.
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping
early_stopping = EarlyStopping('val_loss')
Trainer(early_stop_callback=early_stopping)
"""
def __init__(self, monitor='val_loss',
min_delta=0.0, patience=0, verbose=0, mode='auto'):
super(EarlyStopping, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.min_delta = min_delta
self.wait = 0
self.stopped_epoch = 0
if mode not in ['auto', 'min', 'max']:
logging.info(f'EarlyStopping mode {mode} is unknown, fallback to auto mode.')
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
elif mode == 'max':
self.monitor_op = np.greater
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
else:
self.monitor_op = np.less
if self.monitor_op == np.greater:
self.min_delta *= 1
else:
self.min_delta *= -1
self.on_train_begin()
def on_train_begin(self, logs=None):
# Allow instances to be re-used
self.wait = 0
self.stopped_epoch = 0
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def on_epoch_end(self, epoch, logs=None):
current = logs.get(self.monitor)
stop_training = False
if current is None:
warnings.warn(
f'Early stopping conditioned on metric `{self.monitor}`'
f' which is not available. Available metrics are: {",".join(list(logs.keys()))}',
RuntimeWarning)
stop_training = True
return stop_training
if self.monitor_op(current - self.min_delta, self.best):
self.best = current
self.wait = 0
else:
self.wait += 1
if self.wait >= self.patience:
self.stopped_epoch = epoch
stop_training = True
self.on_train_end()
return stop_training
def on_train_end(self, logs=None):
if self.stopped_epoch > 0 and self.verbose > 0:
logging.info(f'Epoch {self.stopped_epoch + 1:05d}: early stopping')
class ModelCheckpoint(Callback):
r"""Save the model after every epoch.
Args:
filepath (str): path to save the model file.
Can contain named formatting options to be auto-filled.
Example::
# save epoch and val_loss in name
ModelCheckpoint(filepath='{epoch:02d}-{val_loss:.2f}.hdf5')
# saves file like: /path/epoch_2-val_loss_0.2.hdf5
monitor (str): quantity to monitor.
verbose (bool): verbosity mode, 0 or 1.
save_top_k (int): if `save_top_k == k`,
the best k models according to
the quantity monitored will be saved.
if `save_top_k == 0`, no models are saved.
if `save_top_k == -1`, all models are saved.
Please note that the monitors are checked every `period` epochs.
if `save_top_k >= 2` and the callback is called multiple
times inside an epoch, the name of the saved file will be
appended with a version count starting with `v0`.
mode (str): one of {auto, min, max}.
If `save_top_k != 0`, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only (bool): if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
period (int): Interval (number of epochs) between checkpoints.
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
checkpoint_callback = ModelCheckpoint(filepath='my_path')
Trainer(checkpoint_callback=checkpoint_callback)
# saves checkpoints to my_path whenever 'val_loss' has a new min
"""
def __init__(self, filepath, monitor='val_loss', verbose=0,
save_top_k=1, save_weights_only=False,
mode='auto', period=1, prefix=''):
super(ModelCheckpoint, self).__init__()
if (
save_top_k and
os.path.isdir(filepath) and
len(os.listdir(filepath)) > 0
):
warnings.warn(
f"Checkpoint directory {filepath} exists and is not empty with save_top_k != 0."
"All files in this directory will be deleted when a checkpoint is saved!"
)
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
os.makedirs(filepath, exist_ok=True)
self.save_top_k = save_top_k
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_check = 0
self.prefix = prefix
self.best_k_models = {}
# {filename: monitor}
self.kth_best_model = ''
self.best = 0
if mode not in ['auto', 'min', 'max']:
warnings.warn(
f'ModelCheckpoint mode {mode} is unknown, '
'fallback to auto mode.', RuntimeWarning)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.kth_value = np.Inf
self.mode = 'min'
elif mode == 'max':
self.monitor_op = np.greater
self.kth_value = -np.Inf
self.mode = 'max'
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.kth_value = -np.Inf
self.mode = 'max'
else:
self.monitor_op = np.less
self.kth_value = np.Inf
self.mode = 'min'
def _del_model(self, filepath):
dirpath = os.path.dirname(filepath)
# make paths
os.makedirs(dirpath, exist_ok=True)
try:
shutil.rmtree(filepath)
except OSError:
os.remove(filepath)
def _save_model(self, filepath):
dirpath = os.path.dirname(filepath)
# make paths
os.makedirs(dirpath, exist_ok=True)
# delegate the saving to the model
self.save_function(filepath)
def check_monitor_top_k(self, current):
less_than_k_models = len(self.best_k_models.keys()) < self.save_top_k
if less_than_k_models:
return True
return self.monitor_op(current, self.best_k_models[self.kth_best_model])
def on_epoch_end(self, epoch, logs=None):
logs = logs or {}
self.epochs_since_last_check += 1
if self.save_top_k == 0:
# no models are saved
return
if self.epochs_since_last_check >= self.period:
self.epochs_since_last_check = 0
filepath = f'{self.filepath}/{self.prefix}_ckpt_epoch_{epoch}.ckpt'
version_cnt = 0
while os.path.isfile(filepath):
# this epoch called before
filepath = f'{self.filepath}/{self.prefix}_ckpt_epoch_{epoch}_v{version_cnt}.ckpt'
version_cnt += 1
if self.save_top_k != -1:
current = logs.get(self.monitor)
if current is None:
warnings.warn(
f'Can save best model only with {self.monitor} available,'
' skipping.', RuntimeWarning)
else:
if self.check_monitor_top_k(current):
# remove kth
if len(self.best_k_models.keys()) == self.save_top_k:
delpath = self.kth_best_model
self.best_k_models.pop(self.kth_best_model)
self._del_model(delpath)
self.best_k_models[filepath] = current
if len(self.best_k_models.keys()) == self.save_top_k:
# monitor dict has reached k elements
if self.mode == 'min':
self.kth_best_model = max(self.best_k_models, key=self.best_k_models.get)
else:
self.kth_best_model = min(self.best_k_models, key=self.best_k_models.get)
self.kth_value = self.best_k_models[self.kth_best_model]
if self.mode == 'min':
self.best = min(self.best_k_models.values())
else:
self.best = max(self.best_k_models.values())
if self.verbose > 0:
logging.info(
f'\nEpoch {epoch:05d}: {self.monitor} reached'
f' {current:0.5f} (best {self.best:0.5f}), saving model to'
f' {filepath} as top {self.save_top_k}')
self._save_model(filepath)
else:
if self.verbose > 0:
logging.info(
f'\nEpoch {epoch:05d}: {self.monitor}'
f' was not in top {self.save_top_k}')
else:
if self.verbose > 0:
logging.info(f'\nEpoch {epoch:05d}: saving model to {filepath}')
self._save_model(filepath)
class GradientAccumulationScheduler(Callback):
r"""
Change gradient accumulation factor according to scheduling.
Args:
scheduling (dict): scheduling in format {epoch: accumulation_factor}
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import GradientAccumulationScheduler
# at epoch 5 start accumulating every 2 batches
accumulator = GradientAccumulationScheduler(scheduling: {5: 2})
Trainer(accumulate_grad_batches=accumulator)
"""
def __init__(self, scheduling: dict):
if scheduling == {}: # empty dict error
raise TypeError("Empty dict cannot be interpreted correct")
for key in scheduling.keys():
if not isinstance(key, int) or not isinstance(scheduling[key], int):
raise TypeError("All epoches and accumulation factor must be integers")
minimal_epoch = min(scheduling.keys())
if minimal_epoch < 1:
msg = f"Epochs indexing from 1, epoch {minimal_epoch} cannot be interpreted correct"
raise IndexError(msg)
elif minimal_epoch != 1: # if user didnt define first epoch accumulation factor
scheduling.update({1: 1})
self.scheduling = scheduling
self.epochs = sorted(scheduling.keys())
def on_epoch_begin(self, epoch, trainer):
epoch += 1 # indexing epochs from 1
for i in reversed(range(len(self.epochs))):
if epoch >= self.epochs[i]:
trainer.accumulate_grad_batches = self.scheduling.get(self.epochs[i])
break
# if __name__ == '__main__':
# c = EarlyStopping(min_delta=0.9, patience=2, verbose=True)
# losses = [10, 9, 8, 8, 6, 4.3, 5, 4.4, 2.8, 2.5]
# for i, loss in enumerate(losses):
# should_stop = c.on_epoch_end(i, logs={'val_loss': loss})
# logging.info(loss)
# if should_stop:
# break