lightning/pytorch_lightning/trainer/supporters.py

529 lines
17 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections.abc import Iterable, Iterator, Mapping, Sequence
from typing import Any, Callable, Optional, Union
import torch
from torch import Tensor
from torch.utils.data import Dataset
from pytorch_lightning.utilities.apply_func import apply_to_collection
from pytorch_lightning.utilities.cloud_io import get_filesystem
from pytorch_lightning.utilities.data import get_len
from pytorch_lightning.utilities.exceptions import MisconfigurationException
class TensorRunningAccum(object):
"""Tracks a running accumulation values (min, max, mean) without graph
references.
Examples:
>>> accum = TensorRunningAccum(5)
>>> accum.last(), accum.mean()
(None, None)
>>> accum.append(torch.tensor(1.5))
>>> accum.last(), accum.mean()
(tensor(1.5000), tensor(1.5000))
>>> accum.append(torch.tensor(2.5))
>>> accum.last(), accum.mean()
(tensor(2.5000), tensor(2.))
>>> accum.reset()
>>> _= [accum.append(torch.tensor(i)) for i in range(13)]
>>> accum.last(), accum.mean(), accum.min(), accum.max()
(tensor(12.), tensor(10.), tensor(8.), tensor(12.))
"""
def __init__(self, window_length: int):
self.window_length = window_length
self.memory = None
self.current_idx: int = 0
self.last_idx: Optional[int] = None
self.rotated: bool = False
def reset(self) -> None:
"""Empty the accumulator."""
self.__init__(self.window_length)
def last(self):
"""Get the last added element."""
if self.last_idx is not None:
return self.memory[self.last_idx]
def append(self, x):
"""Add an element to the accumulator."""
if self.memory is None:
self.memory = torch.zeros(self.window_length, *x.shape)
# ensure same device and type
if self.memory.device != x.device or self.memory.type() != x.type():
x = x.to(self.memory)
# store without grads
with torch.no_grad():
self.memory[self.current_idx] = x
self.last_idx = self.current_idx
# increase index
self.current_idx += 1
# reset index when hit limit of tensor
self.current_idx = self.current_idx % self.window_length
if self.current_idx == 0:
self.rotated = True
def mean(self):
"""Get mean value from stored elements."""
return self._agg_memory('mean')
def max(self):
"""Get maximal value from stored elements."""
return self._agg_memory('max')
def min(self):
"""Get minimal value from stored elements."""
return self._agg_memory('min')
def _agg_memory(self, how: str):
if self.last_idx is not None:
if self.rotated:
return getattr(self.memory, how)()
else:
return getattr(self.memory[: self.current_idx], how)()
class Accumulator(object):
def __init__(self):
self.num_values = 0
self.total = 0
def accumulate(self, x):
with torch.no_grad():
self.total += x
self.num_values += 1
def mean(self):
return self.total / self.num_values
class PredictionCollection(object):
def __init__(self, global_rank: int, world_size: int):
self.global_rank = global_rank
self.world_size = world_size
self.predictions = {}
self.num_predictions = 0
def _add_prediction(self, name, values, filename):
if filename not in self.predictions:
self.predictions[filename] = {name: values}
elif name not in self.predictions[filename]:
self.predictions[filename][name] = values
elif isinstance(values, Tensor):
self.predictions[filename][name] = torch.cat(
(self.predictions[filename][name], values)
)
elif isinstance(values, list):
self.predictions[filename][name].extend(values)
def add(self, predictions):
if predictions is None:
return
for filename, pred_dict in predictions.items():
for feature_name, values in pred_dict.items():
self._add_prediction(feature_name, values, filename)
def to_disk(self) -> None:
"""Write predictions to file(s).
"""
for filepath, predictions in self.predictions.items():
fs = get_filesystem(filepath)
# normalize local filepaths only
if fs.protocol == "file":
filepath = os.path.realpath(filepath)
if self.world_size > 1:
stem, extension = os.path.splitext(filepath)
filepath = f"{stem}_rank_{self.global_rank}{extension}"
dirpath = os.path.split(filepath)[0]
fs.mkdirs(dirpath, exist_ok=True)
# Convert any tensor values to list
predictions = {
k: v if not isinstance(v, Tensor) else v.tolist()
for k, v in predictions.items()
}
# Check if all features for this file add up to same length
feature_lens = {k: len(v) for k, v in predictions.items()}
if len(set(feature_lens.values())) != 1:
raise ValueError("Mismatching feature column lengths found in stored EvalResult predictions.")
# Switch predictions so each entry has its own dict
outputs = []
for values in zip(*predictions.values()):
output_element = {k: v for k, v in zip(predictions.keys(), values)}
outputs.append(output_element)
# Write predictions for current file to disk
with fs.open(filepath, "wb") as fp:
torch.save(outputs, fp)
class CycleIterator(object):
"""
Iterator for restarting a dataloader if it runs out of samples
"""
def __init__(self, loader: Any, length: Optional[int] = None):
"""
Args:
loader: the loader to restart for cyclic (and optionally infinite) sampling
length: the number of batches to sample (with restarted loaders if necessary) before raising StopIteration
if None: infinite
"""
if length is None:
length = float('inf')
self.length = length
self.loader = loader
self._loader_iter = None
self.counter = 0
def __iter__(self) -> Any:
"""
Creates the internal iterator and returns self
Returns:
CycleIterator: self
"""
self.counter = 0
self._loader_iter = iter(self.loader)
return self
def __next__(self) -> Any:
"""
Fetches the next batch from internal dataloader and restarts
it if necessary
Returns:
Any: the resulting batch
Raises:
StopIteration: if more then :attr:`length` batches have been returned
"""
# Note: if self.length is `inf`, then the iterator will never stop
if self.counter >= self.__len__():
raise StopIteration
try:
return next(self._loader_iter)
except StopIteration:
self._loader_iter = iter(self.loader)
return next(self._loader_iter)
finally:
self.counter += 1
def __len__(self) -> Union[int, float]:
return self.length
class CombinedDataset(object):
"""
Combine multiple datasets and compute their statistics
"""
COMPUTE_FUNCS = {'min_size': min, 'max_size_cycle': max}
def __init__(self, datasets: Union[Sequence, Mapping], mode: str = 'min_size'):
"""
Args:
datasets: a sequence/mapping datasets. Can be a collections of torch.utils.Dataset,
Iterable or even None.
mode: whether to use the minimum number of batches in all samples or the maximum
number of batches in all samples.
"""
self.datasets = datasets
if mode not in self.COMPUTE_FUNCS.keys():
raise MisconfigurationException(
f'You have selected unsupported mode "{mode}",'
f' please select one the: {list(self.COMPUTE_FUNCS.keys())}.'
)
self.mode = mode
@property
def max_len(self) -> Union[int, float]:
return self._calc_num_data(self.datasets, 'max_size_cycle')
@property
def min_len(self) -> Union[int, float]:
return self._calc_num_data(self.datasets, 'min_size')
@staticmethod
def _calc_num_data(datasets: Union[Sequence, Mapping], mode: str) -> Union[int, float]:
"""
Compute the length of `CombinedDataset` according to the `mode`.
Args:
datasets: a sequence/mapping datasets. Can be a collections of torch.utils.data.Dataset,
Iterable or even None.
mode: Determine `CombinedDataset`'s length is the maximum or minimum of
the datasets.
Returns:
length: the length of `CombinedDataset`
"""
if mode not in CombinedDataset.COMPUTE_FUNCS.keys():
raise MisconfigurationException(f"Invalid Mode: {mode}")
# extract the lengths
all_lengths = apply_to_collection(datasets, (Dataset, Iterable, type(None)), get_len,
wrong_dtype=(Sequence, Mapping))
compute_func = CombinedDataset.COMPUTE_FUNCS[mode]
if isinstance(all_lengths, (int, float)):
length = all_lengths
else:
length = _nested_calc_num_data(all_lengths, compute_func)
return length
def __len__(self) -> int:
"""Return the minimum length of the datasets."""
return self._calc_num_data(self.datasets, self.mode)
class CombinedLoader(object):
"""
Combines different dataloaders and allows sampling in parallel.
Supported modes are 'min_size', which raises StopIteration after the shortest loader
(the one with the lowest number of batches) is done, and 'max_size_cycle` which raises
StopIteration after the longest loader (the one with most batches) is done, while cycling
through the shorter loaders.
Examples:
>>> loaders = {'a': torch.utils.data.DataLoader(range(6), batch_size=4),
... 'b': torch.utils.data.DataLoader(range(15), batch_size=5)}
>>> combined_loader = CombinedLoader(loaders, 'max_size_cycle')
>>> for item in combined_loader:
... print(item)
{'a': tensor([0, 1, 2, 3]), 'b': tensor([0, 1, 2, 3, 4])}
{'a': tensor([4, 5]), 'b': tensor([5, 6, 7, 8, 9])}
{'a': tensor([0, 1, 2, 3]), 'b': tensor([10, 11, 12, 13, 14])}
>>> combined_loader = CombinedLoader(loaders, 'min_size')
>>> for item in combined_loader:
... print(item)
{'a': tensor([0, 1, 2, 3]), 'b': tensor([0, 1, 2, 3, 4])}
{'a': tensor([4, 5]), 'b': tensor([5, 6, 7, 8, 9])}
"""
SUPPORTED_MODES = ('min_size', 'max_size_cycle')
def __init__(self, loaders: Any, mode: str = 'min_size'):
"""
Args:
loaders: the loaders to sample from. Can be all kind of collection
mode: the mode. Supported are 'min_size' which stops if the shortest loader is exhausted and
'max_size_cycle' which stops if the longest loader is exhausted and cycles through the smaller ones.
"""
self.loaders = loaders
datasets = apply_to_collection(self.loaders, Iterable, getattr, 'dataset', None,
wrong_dtype=(Sequence, Mapping))
# could be multiple datasets, but use self.dataset to follow the name convention in DataLoader
self.dataset = CombinedDataset(datasets, mode)
if mode not in self.SUPPORTED_MODES:
raise MisconfigurationException(f"Invalid Mode: {mode}")
self.mode = mode
if self.mode == 'max_size_cycle':
self._wrap_loaders_max_size_cycle()
@property
def sampler(self) -> Union[Iterable, Sequence, Mapping]:
"""Return a collections of samplers extracting from loaders."""
return apply_to_collection(self.loaders, Iterable, getattr, 'sampler', None,
wrong_dtype=(Sequence, Mapping))
def _wrap_loaders_max_size_cycle(self) -> Any:
"""
Wraps all loaders to make sure they are cycled until the longest loader is exhausted
Returns:
the wrapped loaders
"""
all_lengths = apply_to_collection(self.loaders, Iterable, get_len,
wrong_dtype=(Sequence, Mapping))
if isinstance(all_lengths, (int, float)):
length = all_lengths
elif isinstance(all_lengths, Mapping):
length = max(all_lengths.values())
elif isinstance(all_lengths, Sequence):
length = max(all_lengths)
if isinstance(self.loaders, Mapping):
self.loaders = type(self.loaders)({k: CycleIterator(v, length=length)
for k, v in self.loaders.items()})
elif isinstance(self.loaders, Sequence):
self.loaders = type(self.loaders)([
CycleIterator(v, length=length) for v in self.loaders
])
# dataloaders are iterable but not sequence
elif isinstance(self.loaders, Iterable):
# only one dataloader, just keep it the same.
pass
else:
raise ValueError(f'Invalid Datatype for loaders: {type(self.loaders).__name__}')
def __iter__(self) -> Any:
"""
Create and return an iterator, `CombinedLoaderIterator`, for the combined loader.
"""
return CombinedLoaderIterator(self.loaders)
@staticmethod
def _calc_num_batches(loaders: Any) -> Union[int, float]:
"""
Compute the length (aka the number of batches) of `CombinedLoader`.
Args:
loaders: a collections of loaders.
Returns:
length: the minimum length of loaders
"""
all_lengths = apply_to_collection(loaders, Iterable, get_len,
wrong_dtype=(Sequence, Mapping))
if isinstance(all_lengths, (int, float)):
return all_lengths
else:
return _nested_calc_num_data(all_lengths, min)
def __len__(self) -> int:
return self._calc_num_batches(self.loaders)
class CombinedLoaderIterator(object):
"""
Custom Iterator returning data from multple loaders, and allows sampling in parallel
"""
def __init__(self, loaders: Any):
"""
Args:
loaders: the loaders to sample from. Can be all kind of collection
"""
self.loaders = loaders
self._loader_iters = None
@property
def loader_iters(self) -> Any:
"""
Get the `_loader_iters` and create one if it is None.
"""
if self._loader_iters is None:
self._loader_iters = self.create_loader_iters(self.loaders)
return self._loader_iters
def __iter__(self) -> Any:
return self
def __next__(self) -> Any:
"""
Fetches the next batch from multiple data loaders
Returns:
a collections of batch data
"""
return self.request_next_batch(self.loader_iters)
@staticmethod
def request_next_batch(loader_iters: Union[Iterator, Sequence, Mapping]) -> Any:
"""
Return the batch of data from multiple iterators.
Args:
loader_iters: a collections of iterators
Returns
Any: a collections of batch data
"""
return apply_to_collection(loader_iters, Iterator, next)
@staticmethod
def create_loader_iters(
loaders: Union[Any, Iterator, Sequence, Mapping]
) -> Union[Any, Iterator, Sequence, Mapping]:
"""
Create and return a collection of iterators from loaders.
Args:
loaders: a collections of loaders
Returns
a collections of iterators
"""
# dataloaders are Iterable but not Sequences. Need this to specifically exclude sequences
return apply_to_collection(loaders, Iterable, iter, wrong_dtype=(Sequence, Mapping))
def _nested_calc_num_data(data: Union[Mapping, Sequence], compute_func: Callable):
if isinstance(data, int):
return data
if isinstance(data, Mapping):
data = list(data.values())
if not isinstance(data, Sequence):
raise TypeError(f'Expected data to be int, Sequence or Mapping, but got {type(data).__name__}')
new_data = []
for x in data:
if isinstance(x, (Mapping, Sequence)):
new_data.append(_nested_calc_num_data(x, compute_func))
else:
new_data.append(x)
return compute_func(new_data)