lightning/tests/metrics/test_metric_lightning.py

81 lines
2.0 KiB
Python

import torch
from pytorch_lightning import Trainer
from pytorch_lightning.metrics import Metric
from tests.base.boring_model import BoringModel
class SumMetric(Metric):
def __init__(self):
super().__init__()
self.add_state("x", torch.tensor(0.0), dist_reduce_fx="sum")
def update(self, x):
self.x += x
def compute(self):
return self.x
def test_metric_lightning(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.metric = SumMetric()
self.sum = 0.0
def training_step(self, batch, batch_idx):
x = batch
self.metric(x.sum())
self.sum += x.sum()
return self.step(x)
def training_epoch_end(self, outs):
assert torch.allclose(self.sum, self.metric.compute())
self.sum = 0.0
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
def test_metric_lightning_log(tmpdir):
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.metric = SumMetric()
self.sum = 0.0
def training_step(self, batch, batch_idx):
x = batch
self.metric(x.sum())
self.sum += x.sum()
self.log("sum", self.metric, on_epoch=True, on_step=False)
return self.step(x)
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
logged = trainer.logged_metrics
assert torch.allclose(torch.tensor(logged["sum"]), model.sum)