208 lines
7.2 KiB
Python
208 lines
7.2 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from copy import deepcopy
|
|
import pickle
|
|
|
|
import cloudpickle
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer, seed_everything
|
|
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
|
|
from tests.base import EvalModelTemplate
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
|
|
class EarlyStoppingTestRestore(EarlyStopping):
|
|
# this class has to be defined outside the test function, otherwise we get pickle error
|
|
def __init__(self, expected_state=None):
|
|
super().__init__()
|
|
self.expected_state = expected_state
|
|
# cache the state for each epoch
|
|
self.saved_states = []
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
if self.expected_state:
|
|
assert self.on_save_checkpoint(trainer, pl_module) == self.expected_state
|
|
|
|
def on_validation_end(self, trainer, pl_module):
|
|
super().on_validation_end(trainer, pl_module)
|
|
self.saved_states.append(self.on_save_checkpoint(trainer, pl_module).copy())
|
|
|
|
|
|
def test_resume_early_stopping_from_checkpoint(tmpdir):
|
|
"""
|
|
Prevent regressions to bugs:
|
|
https://github.com/PyTorchLightning/pytorch-lightning/issues/1464
|
|
https://github.com/PyTorchLightning/pytorch-lightning/issues/1463
|
|
"""
|
|
seed_everything(42)
|
|
model = EvalModelTemplate()
|
|
checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, monitor="early_stop_on", save_top_k=1)
|
|
early_stop_callback = EarlyStoppingTestRestore()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
checkpoint_callback=checkpoint_callback,
|
|
callbacks=[early_stop_callback],
|
|
num_sanity_val_steps=0,
|
|
max_epochs=4,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
checkpoint_filepath = checkpoint_callback.kth_best_model_path
|
|
# ensure state is persisted properly
|
|
checkpoint = torch.load(checkpoint_filepath)
|
|
# the checkpoint saves "epoch + 1"
|
|
early_stop_callback_state = early_stop_callback.saved_states[checkpoint["epoch"] - 1]
|
|
assert 4 == len(early_stop_callback.saved_states)
|
|
assert checkpoint["callbacks"][type(early_stop_callback)] == early_stop_callback_state
|
|
|
|
# ensure state is reloaded properly (assertion in the callback)
|
|
early_stop_callback = EarlyStoppingTestRestore(early_stop_callback_state)
|
|
new_trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
resume_from_checkpoint=checkpoint_filepath,
|
|
callbacks=[early_stop_callback],
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException, match=r'.*you restored a checkpoint with current_epoch*'):
|
|
new_trainer.fit(model)
|
|
|
|
|
|
def test_early_stopping_no_extraneous_invocations(tmpdir):
|
|
"""Test to ensure that callback methods aren't being invoked outside of the callback handler."""
|
|
os.environ['PL_DEV_DEBUG'] = '1'
|
|
|
|
model = EvalModelTemplate()
|
|
expected_count = 4
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[EarlyStopping()],
|
|
val_check_interval=1.0,
|
|
max_epochs=expected_count,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert len(trainer.dev_debugger.early_stopping_history) == expected_count
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"loss_values, patience, expected_stop_epoch",
|
|
[([6, 5, 5, 5, 5, 5], 3, 4), ([6, 5, 4, 4, 3, 3], 1, 3), ([6, 5, 6, 5, 5, 5], 3, 4),],
|
|
)
|
|
def test_early_stopping_patience(tmpdir, loss_values, patience, expected_stop_epoch):
|
|
"""Test to ensure that early stopping is not triggered before patience is exhausted."""
|
|
|
|
class ModelOverrideValidationReturn(EvalModelTemplate):
|
|
validation_return_values = torch.Tensor(loss_values)
|
|
count = 0
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
loss = self.validation_return_values[self.count]
|
|
self.count += 1
|
|
return {"test_val_loss": loss}
|
|
|
|
model = ModelOverrideValidationReturn()
|
|
early_stop_callback = EarlyStopping(monitor="test_val_loss", patience=patience, verbose=True)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[early_stop_callback],
|
|
val_check_interval=1.0,
|
|
num_sanity_val_steps=0,
|
|
max_epochs=10,
|
|
)
|
|
trainer.fit(model)
|
|
assert trainer.current_epoch == expected_stop_epoch
|
|
|
|
|
|
def test_pickling(tmpdir):
|
|
early_stopping = EarlyStopping()
|
|
|
|
early_stopping_pickled = pickle.dumps(early_stopping)
|
|
early_stopping_loaded = pickle.loads(early_stopping_pickled)
|
|
assert vars(early_stopping) == vars(early_stopping_loaded)
|
|
|
|
early_stopping_pickled = cloudpickle.dumps(early_stopping)
|
|
early_stopping_loaded = cloudpickle.loads(early_stopping_pickled)
|
|
assert vars(early_stopping) == vars(early_stopping_loaded)
|
|
|
|
|
|
def test_early_stopping_no_val_step(tmpdir):
|
|
"""Test that early stopping callback falls back to training metrics when no validation defined."""
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
def training_step(self, *args, **kwargs):
|
|
output = super().training_step(*args, **kwargs)
|
|
output.update({'my_train_metric': output['loss']}) # could be anything else
|
|
return output
|
|
|
|
model = CurrentModel()
|
|
model.validation_step = None
|
|
model.val_dataloader = None
|
|
|
|
stopping = EarlyStopping(monitor='my_train_metric', min_delta=0.1, patience=0)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[stopping],
|
|
overfit_batches=0.20,
|
|
max_epochs=10,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
assert trainer.current_epoch < trainer.max_epochs - 1
|
|
|
|
|
|
def test_early_stopping_functionality(tmpdir):
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
def validation_epoch_end(self, outputs):
|
|
losses = [8, 4, 2, 3, 4, 5, 8, 10]
|
|
val_loss = losses[self.current_epoch]
|
|
self.log('abc', torch.tensor(val_loss))
|
|
|
|
model = CurrentModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[EarlyStopping(monitor='abc')],
|
|
overfit_batches=0.20,
|
|
max_epochs=20,
|
|
)
|
|
trainer.fit(model)
|
|
assert trainer.current_epoch == 5, 'early_stopping failed'
|
|
|
|
|
|
def test_early_stopping_functionality_arbitrary_key(tmpdir):
|
|
"""Tests whether early stopping works with a custom key and dictionary results on val step."""
|
|
|
|
class CurrentModel(EvalModelTemplate):
|
|
def validation_epoch_end(self, outputs):
|
|
losses = [8, 4, 2, 3, 4, 5, 8, 10]
|
|
val_loss = losses[self.current_epoch]
|
|
return {'jiraffe': torch.tensor(val_loss)}
|
|
|
|
model = CurrentModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[EarlyStopping(monitor='jiraffe')],
|
|
overfit_batches=0.20,
|
|
max_epochs=20,
|
|
)
|
|
trainer.fit(model)
|
|
assert trainer.current_epoch >= 5, 'early_stopping failed'
|