341 lines
10 KiB
Python
341 lines
10 KiB
Python
import platform
|
|
from collections import namedtuple
|
|
|
|
import pytest
|
|
import torch
|
|
from packaging.version import parse as version_parse
|
|
|
|
import tests.base.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from tests.base import EvalModelTemplate
|
|
|
|
|
|
def test_early_stopping_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
stopping = EarlyStopping(monitor='val_loss', min_delta=0.1)
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
early_stop_callback=stopping,
|
|
gradient_clip_val=1.0,
|
|
overfit_pct=0.20,
|
|
track_grad_norm=2,
|
|
train_percent_check=0.1,
|
|
val_percent_check=0.1,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tutils.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
# test freeze on cpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
@pytest.mark.spawn
|
|
@pytest.mark.skipif(platform.system() == "Windows",
|
|
reason="Distributed training is not supported on Windows")
|
|
@pytest.mark.skipif((platform.system() == "Darwin" and
|
|
version_parse(torch.__version__) < version_parse("1.3.0")),
|
|
reason="Distributed training is not supported on MacOS before Torch 1.3.0")
|
|
def test_multi_cpu_model_ddp(tmpdir):
|
|
"""Make sure DDP works."""
|
|
tutils.set_random_master_port()
|
|
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
gpus=None,
|
|
num_processes=2,
|
|
distributed_backend='ddp_cpu'
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tutils.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_lbfgs_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
progress_bar_refresh_rate=0,
|
|
weights_summary='top',
|
|
train_percent_check=1.0,
|
|
val_percent_check=0.2,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
setattr(hparams, 'optimizer_name', 'lbfgs')
|
|
setattr(hparams, 'learning_rate', 0.002)
|
|
model = EvalModelTemplate(hparams)
|
|
model.configure_optimizers = model.configure_optimizers__lbfgs
|
|
tutils.run_model_test_without_loggers(trainer_options, model, min_acc=0.5)
|
|
|
|
|
|
def test_default_logger_callbacks_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
gradient_clip_val=1.0,
|
|
overfit_pct=0.20,
|
|
progress_bar_refresh_rate=0,
|
|
train_percent_check=0.01,
|
|
val_percent_check=0.01,
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tutils.run_model_test_without_loggers(trainer_options, model)
|
|
|
|
# test freeze on cpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_running_test_after_fitting(tmpdir):
|
|
"""Verify test() on fitted model."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=8,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
test_percent_check=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
trainer.test()
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(trainer, thr=0.5)
|
|
|
|
|
|
def test_running_test_no_val(tmpdir):
|
|
"""Verify `test()` works on a model with no `val_loader`."""
|
|
model = EvalModelTemplate()
|
|
|
|
# logger file to get meta
|
|
logger = tutils.get_default_logger(tmpdir)
|
|
|
|
# logger file to get weights
|
|
checkpoint = tutils.init_checkpoint_callback(logger)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
test_percent_check=0.2,
|
|
checkpoint_callback=checkpoint,
|
|
logger=logger,
|
|
early_stop_callback=False
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
trainer.test()
|
|
|
|
# test we have good test accuracy
|
|
tutils.assert_ok_model_acc(trainer)
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_single_gpu_batch_parse():
|
|
trainer = Trainer()
|
|
|
|
# batch is just a tensor
|
|
batch = torch.rand(2, 3)
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch.device.index == 0 and batch.type() == 'torch.cuda.FloatTensor'
|
|
|
|
# tensor list
|
|
batch = [torch.rand(2, 3), torch.rand(2, 3)]
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch[0].device.index == 0 and batch[0].type() == 'torch.cuda.FloatTensor'
|
|
assert batch[1].device.index == 0 and batch[1].type() == 'torch.cuda.FloatTensor'
|
|
|
|
# tensor list of lists
|
|
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == 'torch.cuda.FloatTensor'
|
|
assert batch[0][1].device.index == 0 and batch[0][1].type() == 'torch.cuda.FloatTensor'
|
|
|
|
# tensor dict
|
|
batch = [{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)}]
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch[0]['a'].device.index == 0 and batch[0]['a'].type() == 'torch.cuda.FloatTensor'
|
|
assert batch[0]['b'].device.index == 0 and batch[0]['b'].type() == 'torch.cuda.FloatTensor'
|
|
|
|
# tuple of tensor list and list of tensor dict
|
|
batch = ([torch.rand(2, 3) for _ in range(2)],
|
|
[{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)} for _ in range(2)])
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch[0][0].device.index == 0 and batch[0][0].type() == 'torch.cuda.FloatTensor'
|
|
|
|
assert batch[1][0]['a'].device.index == 0
|
|
assert batch[1][0]['a'].type() == 'torch.cuda.FloatTensor'
|
|
|
|
assert batch[1][0]['b'].device.index == 0
|
|
assert batch[1][0]['b'].type() == 'torch.cuda.FloatTensor'
|
|
|
|
# namedtuple of tensor
|
|
BatchType = namedtuple('BatchType', ['a', 'b'])
|
|
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
|
|
batch = trainer.transfer_batch_to_gpu(batch, 0)
|
|
assert batch[0].a.device.index == 0
|
|
assert batch[0].a.type() == 'torch.cuda.FloatTensor'
|
|
|
|
|
|
def test_simple_cpu(tmpdir):
|
|
"""Verify continue training session on CPU."""
|
|
model = EvalModelTemplate()
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
val_percent_check=0.1,
|
|
train_percent_check=0.1,
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
|
|
def test_cpu_model(tmpdir):
|
|
"""Make sure model trains on CPU."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
|
|
tutils.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_all_features_cpu_model(tmpdir):
|
|
"""Test each of the trainer options."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
gradient_clip_val=1.0,
|
|
overfit_pct=0.20,
|
|
track_grad_norm=2,
|
|
progress_bar_refresh_rate=0,
|
|
accumulate_grad_batches=2,
|
|
max_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tutils.run_model_test(trainer_options, model, on_gpu=False)
|
|
|
|
|
|
def test_tbptt_cpu_model(tmpdir):
|
|
"""Test truncated back propagation through time works."""
|
|
truncated_bptt_steps = 2
|
|
sequence_size = 30
|
|
batch_size = 30
|
|
|
|
x_seq = torch.rand(batch_size, sequence_size, 1)
|
|
y_seq_list = torch.rand(batch_size, sequence_size, 1).tolist()
|
|
|
|
class MockSeq2SeqDataset(torch.utils.data.Dataset):
|
|
def __getitem__(self, i):
|
|
return x_seq, y_seq_list
|
|
|
|
def __len__(self):
|
|
return 1
|
|
|
|
class BpttTestModel(EvalModelTemplate):
|
|
def __init__(self, hparams):
|
|
super().__init__(hparams)
|
|
self.test_hidden = None
|
|
|
|
def training_step(self, batch, batch_idx, hiddens):
|
|
assert hiddens == self.test_hidden, "Hidden state not persistent between tbptt steps"
|
|
self.test_hidden = torch.rand(1)
|
|
|
|
x_tensor, y_list = batch
|
|
assert x_tensor.shape[1] == truncated_bptt_steps, "tbptt split Tensor failed"
|
|
|
|
y_tensor = torch.tensor(y_list, dtype=x_tensor.dtype)
|
|
assert y_tensor.shape[1] == truncated_bptt_steps, "tbptt split list failed"
|
|
|
|
pred = self(x_tensor.view(batch_size, truncated_bptt_steps))
|
|
loss_val = torch.nn.functional.mse_loss(
|
|
pred, y_tensor.view(batch_size, truncated_bptt_steps))
|
|
return {
|
|
'loss': loss_val,
|
|
'hiddens': self.test_hidden,
|
|
}
|
|
|
|
def train_dataloader(self):
|
|
return torch.utils.data.DataLoader(
|
|
dataset=MockSeq2SeqDataset(),
|
|
batch_size=batch_size,
|
|
shuffle=False,
|
|
sampler=None,
|
|
)
|
|
|
|
hparams = EvalModelTemplate.get_default_hparams()
|
|
hparams.batch_size = batch_size
|
|
hparams.in_features = truncated_bptt_steps
|
|
hparams.hidden_dim = truncated_bptt_steps
|
|
hparams.out_features = truncated_bptt_steps
|
|
|
|
model = BpttTestModel(hparams)
|
|
|
|
# fit model
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
truncated_bptt_steps=truncated_bptt_steps,
|
|
val_percent_check=0,
|
|
weights_summary=None,
|
|
early_stop_callback=False
|
|
)
|
|
result = trainer.fit(model)
|
|
|
|
assert result == 1, 'training failed to complete'
|
|
|
|
|
|
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
|
|
def test_single_gpu_model(tmpdir):
|
|
"""Make sure single GPU works (DP mode)."""
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
train_percent_check=0.1,
|
|
val_percent_check=0.1,
|
|
gpus=1
|
|
)
|
|
|
|
model = EvalModelTemplate()
|
|
tutils.run_model_test(trainer_options, model)
|