lightning/tests/base/model_template.py

112 lines
3.5 KiB
Python

from argparse import Namespace
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning.core.lightning import LightningModule
from tests.base.datasets import TrialMNIST, PATH_DATASETS
from tests.base.model_optimizers import ConfigureOptimizersPool
from tests.base.model_test_dataloaders import TestDataloaderVariations
from tests.base.model_test_epoch_ends import TestEpochEndVariations
from tests.base.model_test_steps import TestStepVariations
from tests.base.model_train_dataloaders import TrainDataloaderVariations
from tests.base.model_train_steps import TrainingStepVariations
from tests.base.model_utilities import ModelTemplateUtils, ModelTemplateData
from tests.base.model_valid_dataloaders import ValDataloaderVariations
from tests.base.model_valid_epoch_ends import ValidationEpochEndVariations
from tests.base.model_valid_steps import ValidationStepVariations
class EvalModelTemplate(
ModelTemplateData,
ModelTemplateUtils,
TrainingStepVariations,
ValidationStepVariations,
ValidationEpochEndVariations,
TestStepVariations,
TestEpochEndVariations,
TrainDataloaderVariations,
ValDataloaderVariations,
TestDataloaderVariations,
ConfigureOptimizersPool,
LightningModule
):
"""
This template houses all combinations of model configurations we want to test
>>> model = EvalModelTemplate()
"""
def __init__(self, hparams: object = None) -> object:
"""Pass in parsed HyperOptArgumentParser to the model."""
if hparams is None:
hparams = EvalModelTemplate.get_default_hparams()
# init superclass
super().__init__()
self.hparams = Namespace(**hparams) if isinstance(hparams, dict) else hparams
# if you specify an example input, the summary will show input/output for each layer
self.example_input_array = torch.rand(5, 28 * 28)
# build model
self.__build_model()
def __build_model(self):
"""
Simple model for testing
:return:
"""
self.c_d1 = nn.Linear(
in_features=self.hparams.in_features,
out_features=self.hparams.hidden_dim
)
self.c_d1_bn = nn.BatchNorm1d(self.hparams.hidden_dim)
self.c_d1_drop = nn.Dropout(self.hparams.drop_prob)
self.c_d2 = nn.Linear(
in_features=self.hparams.hidden_dim,
out_features=self.hparams.out_features
)
def forward(self, x):
x = self.c_d1(x)
x = torch.tanh(x)
x = self.c_d1_bn(x)
x = self.c_d1_drop(x)
x = self.c_d2(x)
logits = F.log_softmax(x, dim=1)
return logits
def loss(self, labels, logits):
nll = F.nll_loss(logits, labels)
return nll
def prepare_data(self):
_ = TrialMNIST(root=self.hparams.data_root, train=True, download=True)
@staticmethod
def get_default_hparams(continue_training: bool = False, hpc_exp_number: int = 0) -> Namespace:
args = dict(
drop_prob=0.2,
batch_size=32,
in_features=28 * 28,
learning_rate=0.001 * 8,
optimizer_name='adam',
data_root=PATH_DATASETS,
out_features=10,
hidden_dim=1000,
b1=0.5,
b2=0.999,
)
if continue_training:
args.update(
test_tube_do_checkpoint_load=True,
hpc_exp_number=hpc_exp_number,
)
hparams = Namespace(**args)
return hparams