lightning/pytorch_lightning/accelerator_backends/gpu_backend.py

60 lines
2.0 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from pytorch_lightning.core import LightningModule
try:
from apex import amp
except ImportError:
APEX_AVAILABLE = False
else:
APEX_AVAILABLE = True
class GPUBackend(object):
def __init__(self, trainer):
self.trainer = trainer
def setup(self, model):
# call setup
self.trainer.call_setup_hook(model)
model.cuda(self.trainer.root_gpu)
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
optimizers, lr_schedulers, optimizer_frequencies = self.trainer.init_optimizers(model)
self.trainer.optimizers = optimizers
self.trainer.lr_schedulers = lr_schedulers
self.trainer.optimizer_frequencies = optimizer_frequencies
# TODO: remove with dropping NVIDIA AMP support
native_amp_available = hasattr(torch.cuda, "amp") and hasattr(torch.cuda.amp, "autocast")
if APEX_AVAILABLE and self.trainer.use_amp and not native_amp_available:
model = self._setup_nvidia_apex(model)
return model
def train(self, model):
results = self.trainer.run_pretrain_routine(model)
return results
def _setup_nvidia_apex(self, model: LightningModule):
model, optimizers = model.configure_apex(amp, model, self.trainer.optimizers, self.trainer.amp_level)
self.trainer.optimizers = optimizers
self.trainer.reinit_scheduler_properties(self.trainer.optimizers, self.trainer.lr_schedulers)
return model