lightning/dockers
Jirka Borovec 7e2e874d95
Refactor: legacy accelerators and plugins (#5645)
* tests: legacy

* legacy: accel

* legacy: plug

* fix imports

* mypy

* flake8
2021-01-26 20:04:36 -05:00
..
base-conda tests for legacy checkpoints (#5223) 2021-01-26 14:27:56 +01:00
base-cuda tests for legacy checkpoints (#5223) 2021-01-26 14:27:56 +01:00
base-xla try to update failing dockers (#5611) 2021-01-25 17:10:56 -05:00
release try to update failing dockers (#5611) 2021-01-25 17:10:56 -05:00
tpu-tests Refactor: legacy accelerators and plugins (#5645) 2021-01-26 20:04:36 -05:00
README.md [dockers] install nvidia-dali-cudaXXX (#4532) 2020-11-09 21:18:24 +06:30

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.8-pt1.6 \
    -f dockers/base-cuda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.6 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6