lightning/pytorch_lightning/trainer/evaluation_loop.py

355 lines
11 KiB
Python

"""
Validation loop
===============
The lightning validation loop handles everything except the actual computations of your model.
To decide what will happen in your validation loop, define the `validation_step` function.
Below are all the things lightning automates for you in the validation loop.
.. note:: Lightning will run 5 steps of validation in the beginning of training as a sanity
check so you don't have to wait until a full epoch to catch possible validation issues.
Check validation every n epochs
-------------------------------
If you have a small dataset you might want to check validation every n epochs
.. code-block:: python
# DEFAULT
trainer = Trainer(check_val_every_n_epoch=1)
Set how much of the validation set to check
-------------------------------------------
If you don't want to check 100% of the validation set (for debugging or if it's huge), set this flag.
limit_val_batches will be overwritten by overfit_batches if `overfit_batches > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(limit_val_batches=1.0)
# check 10% only
trainer = Trainer(limit_val_batches=0.1)
Set how much of the test set to check
-------------------------------------
If you don't want to check 100% of the test set (for debugging or if it's huge), set this flag.
limit_test_batches will be overwritten by overfit_batches if `overfit_batches > 0`
.. code-block:: python
# DEFAULT
trainer = Trainer(limit_test_batches=1.0)
# check 10% only
trainer = Trainer(limit_test_batches=0.1)
Set validation check frequency within 1 training epoch
------------------------------------------------------
For large datasets it's often desirable to check validation multiple times within a training loop.
Pass in a float to check that often within 1 training epoch.
Pass in an int k to check every k training batches. Must use an int if using an IterableDataset.
.. code-block:: python
# DEFAULT
trainer = Trainer(val_check_interval=0.95)
# check every .25 of an epoch
trainer = Trainer(val_check_interval=0.25)
# check every 100 train batches (ie: for IterableDatasets or fixed frequency)
trainer = Trainer(val_check_interval=100)
Set the number of validation sanity steps
-----------------------------------------
Lightning runs a few steps of validation in the beginning of training.
This avoids crashing in the validation loop sometime deep into a lengthy training loop.
.. code-block:: python
# DEFAULT
trainer = Trainer(num_sanity_val_steps=2)
You can use `Trainer(num_sanity_val_steps=0)` to skip the sanity check or `Trainer(num_sanity_val_steps=-1)`
to check all the validation data.
# Testing loop
To ensure you don't accidentally use test data to guide training decisions Lightning
makes running the test set deliberate.
**test**
You have two options to run the test set.
First case is where you test right after a full training routine.
.. code-block:: python
# run full training
trainer.fit(model)
# run test set
trainer.test()
Second case is where you load a model and run the test set
.. code-block:: python
model = MyLightningModule.load_from_checkpoint(
checkpoint_path='/path/to/pytorch_checkpoint.ckpt',
hparams_file='/path/to/test_tube/experiment/version/hparams.yaml',
map_location=None
)
# init trainer with whatever options
trainer = Trainer(...)
# test (pass in the model)
trainer.test(model)
In this second case, the options you pass to trainer will be used when running
the test set (ie: 16-bit, dp, ddp, etc...)
"""
from abc import ABC, abstractmethod
from pprint import pprint
from typing import Callable, List, Union
import torch
from torch.utils.data import DataLoader
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.utilities import rank_zero_warn, flatten_dict, AMPType
from pytorch_lightning.core.step_result import EvalResult, Result
from pytorch_lightning.trainer.evaluate_loop import EvaluationLoop
try:
import torch_xla.distributed.parallel_loader as xla_pl
import torch_xla.core.xla_model as xm
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
try:
import horovod.torch as hvd
except (ModuleNotFoundError, ImportError):
HOROVOD_AVAILABLE = False
else:
HOROVOD_AVAILABLE = True
class TrainerEvaluationLoopMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
on_gpu: bool
use_ddp: bool
use_dp: bool
use_ddp2: bool
use_horovod: bool
use_single_gpu: bool
data_parallel_device_ids: ...
model: LightningModule
num_test_batches: List[int]
num_val_batches: int
world_size: int
fast_dev_run: ...
process_output: ...
progress_bar_dict: ...
global_rank: int
current_epoch: int
callback_metrics: ...
test_dataloaders: DataLoader
val_dataloaders: DataLoader
use_tpu: bool
reload_dataloaders_every_epoch: ...
tpu_id: int
verbose_test: bool
running_sanity_check: bool
amp_backend: AMPType
# Callback system
on_validation_batch_start: Callable
on_validation_batch_end: Callable
on_test_batch_start: Callable
on_test_batch_end: Callable
on_validation_start: Callable
on_validation_end: Callable
on_test_start: Callable
on_test_end: Callable
accelerator_backend: ...
evaluation_loop: EvaluationLoop
@abstractmethod
def copy_trainer_model_properties(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def get_model(self) -> LightningModule:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def transfer_batch_to_gpu(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def add_progress_bar_metrics(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def log_metrics(self, *args, **kwargs):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_test_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def reset_val_dataloader(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def call_hook(self, hook_name, *args, **kwargs):
"""Warning: this is just empty shell for code implemented in other class."""
def run_evaluation(self, test_mode: bool = False, max_batches=None):
# bookkeeping
self.evaluation_loop.testing = test_mode
dataloaders, max_batches = self.evaluation_loop.get_evaluation_dataloaders(max_batches)
if self.evaluation_loop.should_skip_evaluation(dataloaders, max_batches):
return [], []
# enable eval mode + no grads
model = self.get_model()
model.zero_grad()
model.eval()
torch.set_grad_enabled(False)
# hook
self.evaluation_loop.on_evaluation_start()
# set up the eval loop
self.evaluation_loop.setup(model, max_batches, dataloaders)
# hook
# TODO: should this be insider the dataloader loop?
self.evaluation_loop.on_evaluation_epoch_start()
# run validation/testing
for dataloader_idx, dataloader in enumerate(dataloaders):
# bookkeeping
dl_outputs = []
dataloader = self.accelerator_backend.process_dataloader(dataloader)
dl_max_batches = self.evaluation_loop.max_batches[dataloader_idx]
for batch_idx, batch in enumerate(dataloader):
if batch is None:
continue
# stop short when running on limited batches
if batch_idx >= dl_max_batches:
break
# hook
self.evaluation_loop.on_evaluation_batch_start(batch, batch_idx, dataloader_idx)
# lightning module methods
output = self.evaluation_loop.evaluation_step(test_mode, batch, batch_idx, dataloader_idx)
output = self.evaluation_loop.evaluation_step_end(output)
# hook
self.evaluation_loop.on_evaluation_batch_end(batch, batch_idx, dataloader_idx)
# clean up
self.evaluation_loop.evaluation_batch_end_cleanup(output, batch_idx, dataloader_idx)
self.evaluation_loop.log_step_metrics(output, batch_idx)
# track epoch level metrics
if output is not None:
dl_outputs.append(output)
self.evaluation_loop.outputs.append(dl_outputs)
# lightning module method
eval_results = self.evaluation_loop.evaluation_epoch_end(num_dataloaders=len(dataloaders))
# bookkeeping
self.evaluation_loop.log_epoch_metrics(eval_results)
self.evaluation_loop.predictions.to_disk()
# hook
self.evaluation_loop.on_evaluation_epoch_end()
# log the final eval loop metrics
eval_loop_results = self.__log_evaluation_epoch_metrics(eval_results, test_mode)
# enable train mode again
model.train()
torch.set_grad_enabled(True)
# hook
self.evaluation_loop.on_evaluation_end()
return eval_loop_results, eval_results
def __log_evaluation_epoch_metrics(self, eval_results, test_mode):
if self.running_sanity_check:
return
eval_loop_results = []
if eval_results is not None and len(eval_results) > 0:
# in eval, the user may return something at every validation step without final reduction
if not isinstance(eval_results, list):
eval_results = [eval_results]
for result_idx, result in enumerate(eval_results):
if isinstance(result, EvalResult):
prog_bar_metrics = result.epoch_pbar_metrics
log_metrics = result.epoch_log_metrics
callback_metrics = result.callback_metrics
# in testing we don't need the callback metrics
if test_mode:
callback_metrics = {}
else:
_, prog_bar_metrics, log_metrics, callback_metrics, _ = self.process_output(result)
# eval loop returns all metrics
dataloader_result_metrics = {**prog_bar_metrics, **log_metrics, **callback_metrics}
# add metrics to prog bar
self.add_progress_bar_metrics(prog_bar_metrics)
# log metrics
self.log_metrics(log_metrics, {})
# track metrics for callbacks
self.callback_metrics.update(callback_metrics)
if len(dataloader_result_metrics) > 0:
eval_loop_results.append(dataloader_result_metrics)
# log results of test
if test_mode and self.is_global_zero and self.verbose_test:
print('-' * 80)
for result_idx, results in enumerate(eval_loop_results):
print(f'DATALOADER:{result_idx} TEST RESULTS')
pprint(results)
print('-' * 80)
return eval_loop_results