lightning/tests/debug.py

96 lines
2.5 KiB
Python

import pytest
from pytorch_lightning import Trainer
from pytorch_lightning.examples.new_project_templates.lightning_module_template import LightningTemplateModel
from argparse import Namespace
from test_tube import Experiment
from pytorch_lightning.callbacks import ModelCheckpoint
import numpy as np
import warnings
import torch
import os
import shutil
import pdb
def get_model():
# set up model with these hyperparams
root_dir = os.path.dirname(os.path.realpath(__file__))
hparams = Namespace(**{'drop_prob': 0.2,
'batch_size': 32,
'in_features': 28*28,
'learning_rate': 0.001*8,
'optimizer_name': 'adam',
'data_root': os.path.join(root_dir, 'mnist'),
'out_features': 10,
'hidden_dim': 1000})
model = LightningTemplateModel(hparams)
return model
def get_exp(debug=True):
# set up exp object without actually saving logs
root_dir = os.path.dirname(os.path.realpath(__file__))
exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir')
return exp
def init_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
os.makedirs(save_dir, exist_ok=True)
return save_dir
def clear_save_dir():
root_dir = os.path.dirname(os.path.realpath(__file__))
save_dir = os.path.join(root_dir, 'save_dir')
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
def main():
save_dir = init_save_dir()
model = get_model()
# exp file to get meta
exp = get_exp(False)
exp.save()
# exp file to get weights
checkpoint = ModelCheckpoint(save_dir)
trainer = Trainer(
checkpoint_callback=checkpoint,
progress_bar=True,
experiment=exp,
max_nb_epochs=1,
train_percent_check=0.1,
val_percent_check=0.1,
gpus=[0, 1],
distributed_backend='ddp',
use_amp=True
)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'amp + ddp model failed to complete'
# load trained model
pdb.set_trace()
tags_path = exp.get_data_path(exp.name, exp.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
LightningTemplateModel.load_from_metrics(weights_path=save_dir, tags_csv=tags_path)
clear_save_dir()
if __name__ == '__main__':
main()