185 lines
4.5 KiB
Python
185 lines
4.5 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
|
|
from pytorch_lightning.metrics.functional.reduction import reduce
|
|
|
|
|
|
def mse(
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
reduction: str = 'elementwise_mean'
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes mean squared error
|
|
|
|
Args:
|
|
pred: estimated labels
|
|
target: ground truth labels
|
|
reduction: method for reducing mse (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
|
|
Return:
|
|
Tensor with MSE
|
|
|
|
Example:
|
|
|
|
>>> x = torch.tensor([0., 1, 2, 3])
|
|
>>> y = torch.tensor([0., 1, 2, 2])
|
|
>>> mse(x, y)
|
|
tensor(0.2500)
|
|
|
|
"""
|
|
mse = F.mse_loss(pred, target, reduction='none')
|
|
mse = reduce(mse, reduction=reduction)
|
|
return mse
|
|
|
|
|
|
def rmse(
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
reduction: str = 'elementwise_mean'
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes root mean squared error
|
|
|
|
Args:
|
|
pred: estimated labels
|
|
target: ground truth labels
|
|
reduction: method for reducing rmse (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
|
|
Return:
|
|
Tensor with RMSE
|
|
|
|
|
|
>>> x = torch.tensor([0., 1, 2, 3])
|
|
>>> y = torch.tensor([0., 1, 2, 2])
|
|
>>> rmse(x, y)
|
|
tensor(0.5000)
|
|
|
|
"""
|
|
rmse = torch.sqrt(mse(pred, target, reduction=reduction))
|
|
return rmse
|
|
|
|
|
|
def mae(
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
reduction: str = 'elementwise_mean'
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes mean absolute error
|
|
|
|
Args:
|
|
pred: estimated labels
|
|
target: ground truth labels
|
|
reduction: method for reducing mae (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
|
|
Return:
|
|
Tensor with MAE
|
|
|
|
Example:
|
|
|
|
>>> x = torch.tensor([0., 1, 2, 3])
|
|
>>> y = torch.tensor([0., 1, 2, 2])
|
|
>>> mae(x, y)
|
|
tensor(0.2500)
|
|
|
|
"""
|
|
mae = F.l1_loss(pred, target, reduction='none')
|
|
mae = reduce(mae, reduction=reduction)
|
|
return mae
|
|
|
|
|
|
def rmsle(
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
reduction: str = 'elementwise_mean'
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes root mean squared log error
|
|
|
|
Args:
|
|
pred: estimated labels
|
|
target: ground truth labels
|
|
reduction: method for reducing rmsle (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum: add elements
|
|
|
|
Return:
|
|
Tensor with RMSLE
|
|
|
|
Example:
|
|
|
|
>>> x = torch.tensor([0., 1, 2, 3])
|
|
>>> y = torch.tensor([0., 1, 2, 2])
|
|
>>> rmsle(x, y)
|
|
tensor(0.0207)
|
|
|
|
"""
|
|
rmsle = mse(torch.log(pred + 1), torch.log(target + 1), reduction=reduction)
|
|
return rmsle
|
|
|
|
|
|
def psnr(
|
|
pred: torch.Tensor,
|
|
target: torch.Tensor,
|
|
data_range: float = None,
|
|
base: float = 10.0,
|
|
reduction: str = 'elementwise_mean'
|
|
) -> torch.Tensor:
|
|
"""
|
|
Computes the peak signal-to-noise ratio
|
|
|
|
Args:
|
|
pred: estimated signal
|
|
target: groun truth signal
|
|
data_range: the range of the data. If None, it is determined from the data (max - min)
|
|
base: a base of a logarithm to use (default: 10)
|
|
reduction: method for reducing psnr (default: takes the mean)
|
|
Available reduction methods:
|
|
|
|
- elementwise_mean: takes the mean
|
|
- none: pass array
|
|
- sum add elements
|
|
|
|
Return:
|
|
Tensor with PSNR score
|
|
|
|
Example:
|
|
|
|
>>> from pytorch_lightning.metrics.regression import PSNR
|
|
>>> pred = torch.tensor([[0.0, 1.0], [2.0, 3.0]])
|
|
>>> target = torch.tensor([[3.0, 2.0], [1.0, 0.0]])
|
|
>>> metric = PSNR()
|
|
>>> metric(pred, target)
|
|
tensor(2.5527)
|
|
|
|
"""
|
|
|
|
if data_range is None:
|
|
data_range = max(target.max() - target.min(), pred.max() - pred.min())
|
|
else:
|
|
data_range = torch.tensor(float(data_range))
|
|
|
|
mse_score = mse(pred.view(-1), target.view(-1), reduction=reduction)
|
|
psnr_base_e = 2 * torch.log(data_range) - torch.log(mse_score)
|
|
psnr = psnr_base_e * (10 / torch.log(torch.tensor(base)))
|
|
return psnr
|