302 lines
9.6 KiB
Python
302 lines
9.6 KiB
Python
"""
|
|
Generates a summary of a model's layers and dimensionality
|
|
"""
|
|
|
|
import gc
|
|
import os
|
|
import subprocess
|
|
from subprocess import PIPE
|
|
from typing import Tuple, Dict, Union, List
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn import Module
|
|
|
|
import pytorch_lightning as pl
|
|
|
|
from pytorch_lightning import _logger as log
|
|
|
|
|
|
class ModelSummary(object):
|
|
|
|
def __init__(self, model: 'pl.LightningModule', mode: str = 'full'):
|
|
""" Generates summaries of model layers and dimensions. """
|
|
self.model = model
|
|
self.mode = mode
|
|
self.in_sizes = []
|
|
self.out_sizes = []
|
|
|
|
self.summarize()
|
|
|
|
def __str__(self):
|
|
return self.summary.__str__()
|
|
|
|
def __repr__(self):
|
|
return self.summary.__str__()
|
|
|
|
def named_modules(self) -> List[Tuple[str, Module]]:
|
|
if self.mode == 'full':
|
|
mods = self.model.named_modules()
|
|
mods = list(mods)[1:] # do not include root module (LightningModule)
|
|
elif self.mode == 'top':
|
|
# the children are the top-level modules
|
|
mods = self.model.named_children()
|
|
else:
|
|
mods = []
|
|
return list(mods)
|
|
|
|
def get_variable_sizes(self) -> None:
|
|
""" Run sample input through each layer to get output sizes """
|
|
mods = self.named_modules()
|
|
in_sizes = []
|
|
out_sizes = []
|
|
input_ = self.model.example_input_array
|
|
|
|
if self.model.on_gpu:
|
|
device = next(self.model.parameters()).get_device()
|
|
# test if input is a list or a tuple
|
|
if isinstance(input_, (list, tuple)):
|
|
input_ = [input_i.cuda(device) if torch.is_tensor(input_i) else input_i
|
|
for input_i in input_]
|
|
else:
|
|
input_ = input_.cuda(device)
|
|
|
|
if self.model.trainer.use_amp:
|
|
# test if it is not a list or a tuple
|
|
if isinstance(input_, (list, tuple)):
|
|
input_ = [input_i.half() if torch.is_tensor(input_i) else input_i
|
|
for input_i in input_]
|
|
else:
|
|
input_ = input_.half()
|
|
|
|
with torch.no_grad():
|
|
|
|
for _, m in mods:
|
|
if isinstance(input_, (list, tuple)): # pragma: no-cover
|
|
out = m(*input_)
|
|
else:
|
|
out = m(input_)
|
|
|
|
if isinstance(input_, (list, tuple)): # pragma: no-cover
|
|
in_size = []
|
|
for x in input_:
|
|
if isinstance(x, list):
|
|
in_size.append(len(x))
|
|
else:
|
|
in_size.append(x.size())
|
|
else:
|
|
in_size = np.array(input_.size())
|
|
|
|
in_sizes.append(in_size)
|
|
|
|
if isinstance(out, (list, tuple)): # pragma: no-cover
|
|
out_size = np.asarray([x.size() for x in out])
|
|
else:
|
|
out_size = np.array(out.size())
|
|
|
|
out_sizes.append(out_size)
|
|
input_ = out
|
|
|
|
self.in_sizes = in_sizes
|
|
self.out_sizes = out_sizes
|
|
assert len(in_sizes) == len(out_sizes)
|
|
|
|
def get_layer_names(self) -> None:
|
|
""" Collect Layer Names """
|
|
mods = self.named_modules()
|
|
names = []
|
|
layers = []
|
|
for name, m in mods:
|
|
names += [name]
|
|
layers += [str(m.__class__)]
|
|
|
|
layer_types = [x.split('.')[-1][:-2] for x in layers]
|
|
|
|
self.layer_names = names
|
|
self.layer_types = layer_types
|
|
|
|
def get_parameter_sizes(self) -> None:
|
|
""" Get sizes of all parameters in `model` """
|
|
mods = self.named_modules()
|
|
sizes = []
|
|
for _, m in mods:
|
|
p = list(m.parameters())
|
|
modsz = [np.array(param.size()) for param in p]
|
|
sizes.append(modsz)
|
|
|
|
self.param_sizes = sizes
|
|
|
|
def get_parameter_nums(self) -> None:
|
|
""" Get number of parameters in each layer """
|
|
param_nums = []
|
|
for mod in self.param_sizes:
|
|
all_params = 0
|
|
for p in mod:
|
|
all_params += np.prod(p)
|
|
param_nums.append(all_params)
|
|
self.param_nums = param_nums
|
|
|
|
def make_summary(self) -> None:
|
|
"""
|
|
Makes a summary listing with:
|
|
|
|
Layer Name, Layer Type, Input Size, Output Size, Number of Parameters
|
|
"""
|
|
arrays = [['Name', self.layer_names],
|
|
['Type', self.layer_types],
|
|
['Params', list(map(get_human_readable_count, self.param_nums))]]
|
|
if self.model.example_input_array is not None:
|
|
arrays.append(['In sizes', self.in_sizes])
|
|
arrays.append(['Out sizes', self.out_sizes])
|
|
|
|
self.summary = _format_summary_table(*arrays)
|
|
|
|
def summarize(self) -> None:
|
|
self.get_layer_names()
|
|
self.get_parameter_sizes()
|
|
self.get_parameter_nums()
|
|
|
|
if self.model.example_input_array is not None:
|
|
self.get_variable_sizes()
|
|
self.make_summary()
|
|
|
|
|
|
def _format_summary_table(*cols) -> str:
|
|
"""
|
|
Takes in a number of arrays, each specifying a column in
|
|
the summary table, and combines them all into one big
|
|
string defining the summary table that are nicely formatted.
|
|
"""
|
|
n_rows = len(cols[0][1])
|
|
n_cols = 1 + len(cols)
|
|
|
|
# Layer counter
|
|
counter = list(map(str, list(range(n_rows))))
|
|
counter_len = max([len(c) for c in counter])
|
|
|
|
# Get formatting length of each column
|
|
length = []
|
|
for c in cols:
|
|
str_l = len(c[0]) # default length is header length
|
|
for a in c[1]:
|
|
if isinstance(a, np.ndarray):
|
|
array_string = '[' + ', '.join([str(j) for j in a]) + ']'
|
|
str_l = max(len(array_string), str_l)
|
|
else:
|
|
str_l = max(len(a), str_l)
|
|
length.append(str_l)
|
|
|
|
# Formatting
|
|
s = '{:<{}}'
|
|
full_length = sum(length) + 3 * n_cols
|
|
header = [s.format(' ', counter_len)] + [s.format(c[0], l) for c, l in zip(cols, length)]
|
|
|
|
# Summary = header + divider + Rest of table
|
|
summary = ' | '.join(header) + '\n' + '-' * full_length
|
|
for i in range(n_rows):
|
|
line = s.format(counter[i], counter_len)
|
|
for c, l in zip(cols, length):
|
|
if isinstance(c[1][i], np.ndarray):
|
|
array_string = '[' + ', '.join([str(j) for j in c[1][i]]) + ']'
|
|
line += ' | ' + array_string + ' ' * (l - len(array_string))
|
|
else:
|
|
line += ' | ' + s.format(c[1][i], l)
|
|
summary += '\n' + line
|
|
|
|
return summary
|
|
|
|
|
|
def print_mem_stack() -> None: # pragma: no-cover
|
|
for obj in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
|
|
log.info(type(obj), obj.size())
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def count_mem_items() -> Tuple[int, int]: # pragma: no-cover
|
|
num_params = 0
|
|
num_tensors = 0
|
|
for obj in gc.get_objects():
|
|
try:
|
|
if torch.is_tensor(obj) or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
|
|
obj_type = str(type(obj))
|
|
if 'parameter' in obj_type:
|
|
num_params += 1
|
|
else:
|
|
num_tensors += 1
|
|
except Exception:
|
|
pass
|
|
|
|
return num_params, num_tensors
|
|
|
|
|
|
def get_memory_profile(mode: str) -> Union[Dict[str, int], Dict[int, int]]:
|
|
""" Get a profile of the current memory usage.
|
|
|
|
:param mode: There are two modes:
|
|
- 'all' means return memory for all gpus
|
|
- 'min_max' means return memory for max and min
|
|
:return:
|
|
"""
|
|
memory_map = get_gpu_memory_map()
|
|
|
|
if mode == 'min_max':
|
|
min_index, min_memory = min(memory_map.items(), key=lambda item: item[1])
|
|
max_index, max_memory = max(memory_map.items(), key=lambda item: item[1])
|
|
|
|
memory_map = {'min_gpu_mem': min_memory, 'max_gpu_mem': max_memory}
|
|
|
|
return memory_map
|
|
|
|
|
|
def get_gpu_memory_map() -> Dict[str, int]:
|
|
"""Get the current gpu usage.
|
|
|
|
Return:
|
|
A dictionary in which the keys are device ids as integers and
|
|
values are memory usage as integers in MB.
|
|
"""
|
|
result = subprocess.run(
|
|
[
|
|
'nvidia-smi',
|
|
'--query-gpu=memory.used',
|
|
'--format=csv,nounits,noheader',
|
|
],
|
|
encoding='utf-8',
|
|
# capture_output=True, # valid for python version >=3.7
|
|
stdout=PIPE, stderr=PIPE, # for backward compatibility with python version 3.6
|
|
check=True)
|
|
# Convert lines into a dictionary
|
|
gpu_memory = [int(x) for x in result.stdout.strip().split(os.linesep)]
|
|
gpu_memory_map = {f'gpu_{index}': memory for index, memory in enumerate(gpu_memory)}
|
|
return gpu_memory_map
|
|
|
|
|
|
def get_human_readable_count(number: int) -> str:
|
|
"""
|
|
Abbreviates an integer number with K, M, B, T for thousands, millions,
|
|
billions and trillions, respectively.
|
|
|
|
Examples:
|
|
123 -> 123
|
|
1234 -> 1 K (one thousand)
|
|
2e6 -> 2 M (two million)
|
|
3e9 -> 3 B (three billion)
|
|
4e12 -> 4 T (four trillion)
|
|
5e15 -> 5,000 T
|
|
|
|
:param number: a positive integer number
|
|
:return: a string formatted according to the pattern described above.
|
|
"""
|
|
assert number >= 0
|
|
labels = [' ', 'K', 'M', 'B', 'T']
|
|
num_digits = int(np.floor(np.log10(number)) + 1 if number > 0 else 1)
|
|
num_groups = int(np.ceil(num_digits / 3))
|
|
num_groups = min(num_groups, len(labels)) # don't abbreviate beyond trillions
|
|
shift = -3 * (num_groups - 1)
|
|
number = number * (10 ** shift)
|
|
index = num_groups - 1
|
|
return f'{int(number):,d} {labels[index]}'
|