lightning/docs/source/apex.rst

81 lines
2.0 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.trainer.trainer import Trainer
16-bit training
=================
Lightning offers 16-bit training for CPUs, GPUs and TPUs.
GPU 16-bit
----------
16 bit precision can cut your memory footprint by half.
If using volta architecture GPUs it can give a dramatic training speed-up as well.
.. note:: PyTorch 1.6+ is recommended for 16-bit
Native torch
^^^^^^^^^^^^
When using PyTorch 1.6+ Lightning uses the native amp implementation to support 16-bit.
.. testcode::
# turn on 16-bit
trainer = Trainer(precision=16)
Apex 16-bit
^^^^^^^^^^^
If you are using an earlier version of PyTorch Lightning uses Apex to support 16-bit.
Follow these instructions to install Apex.
To use 16-bit precision, do two things:
1. Install Apex
2. Set the "precision" trainer flag.
.. code-block:: bash
$ git clone https://github.com/NVIDIA/apex
$ cd apex
# ------------------------
# OPTIONAL: on your cluster you might need to load cuda 10 or 9
# depending on how you installed PyTorch
# see available modules
module avail
# load correct cuda before install
module load cuda-10.0
# ------------------------
# make sure you've loaded a cuda version > 4.0 and < 7.0
module load gcc-6.1.0
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
.. warning:: NVIDIA Apex and DDP have instability problems. We recommend native 16-bit in PyTorch 1.6+
Enable 16-bit
^^^^^^^^^^^^^
.. testcode::
# turn on 16-bit
trainer = Trainer(amp_level='O2', precision=16)
If you need to configure the apex init for your particular use case or want to use a different way of doing
16-bit training, override :meth:`pytorch_lightning.core.LightningModule.configure_apex`.
TPU 16-bit
----------
16-bit on TPus is much simpler. To use 16-bit with TPUs set precision to 16 when using the tpu flag
.. testcode::
# DEFAULT
trainer = Trainer(tpu_cores=8, precision=32)
# turn on 16-bit
trainer = Trainer(tpu_cores=8, precision=16)