818 lines
31 KiB
ReStructuredText
818 lines
31 KiB
ReStructuredText
:orphan:
|
|
|
|
#################
|
|
Conversational AI
|
|
#################
|
|
|
|
These are amazing ecosystems to help with Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text to speech (TTS).
|
|
|
|
----
|
|
|
|
****
|
|
NeMo
|
|
****
|
|
|
|
`NVIDIA NeMo <https://github.com/NVIDIA/NeMo>`_ is a toolkit for building new State-of-the-Art
|
|
Conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR),
|
|
Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of
|
|
prebuilt modules that include everything needed to train on your data.
|
|
Every module can easily be customized, extended, and composed to create new Conversational AI
|
|
model architectures.
|
|
|
|
Conversational AI architectures are typically very large and require a lot of data and compute
|
|
for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node
|
|
mixed-precision training.
|
|
|
|
.. note:: Every NeMo model is a LightningModule that comes equipped with all supporting infrastructure for training and reproducibility.
|
|
|
|
----------
|
|
|
|
NeMo Models
|
|
===========
|
|
|
|
NeMo Models contain everything needed to train and reproduce state of the art Conversational AI
|
|
research and applications, including:
|
|
|
|
- neural network architectures
|
|
- datasets/data loaders
|
|
- data preprocessing/postprocessing
|
|
- data augmentors
|
|
- optimizers and schedulers
|
|
- tokenizers
|
|
- language models
|
|
|
|
NeMo uses `Hydra <https://hydra.cc/>`_ for configuring both NeMo models and the PyTorch Lightning Trainer.
|
|
Depending on the domain and application, many different AI libraries will have to be configured
|
|
to build the application. Hydra makes it easy to bring all of these libraries together
|
|
so that each can be configured from .yaml or the Hydra CLI.
|
|
|
|
.. note:: Every NeMo model has an example configuration file and a corresponding script that contains all configurations needed for training.
|
|
|
|
The end result of using NeMo, PyTorch Lightning, and Hydra is that
|
|
NeMo models all have the same look and feel. This makes it easy to do Conversational AI research
|
|
across multiple domains. NeMo models are also fully compatible with the PyTorch ecosystem.
|
|
|
|
Installing NeMo
|
|
---------------
|
|
|
|
Before installing NeMo, please install Cython first.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install Cython
|
|
|
|
For ASR and TTS models, also install these linux utilities.
|
|
|
|
.. code-block:: bash
|
|
|
|
apt-get update && apt-get install -y libsndfile1 ffmpeg
|
|
|
|
Then installing the latest NeMo release is a simple pip install.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install nemo_toolkit[all]==1.0.0b1
|
|
|
|
To install the main branch from GitHub:
|
|
|
|
.. code-block:: bash
|
|
|
|
python -m pip install git+https://github.com/NVIDIA/NeMo.git@main#egg=nemo_toolkit[all]
|
|
|
|
To install from a local clone of NeMo:
|
|
|
|
.. code-block:: bash
|
|
|
|
./reinstall.sh # from cloned NeMo's git root
|
|
|
|
For Docker users, the NeMo container is available on
|
|
`NGC <https://ngc.nvidia.com/catalog/containers/nvidia:nemo>`_.
|
|
|
|
.. code-block:: bash
|
|
|
|
docker pull nvcr.io/nvidia/nemo:v1.0.0b1
|
|
|
|
.. code-block:: bash
|
|
|
|
docker run --runtime=nvidia -it --rm -v --shm-size=8g -p 8888:8888 -p 6006:6006 --ulimit memlock=-1 --ulimit stack=67108864 nvcr.io/nvidia/nemo:v1.0.0b1
|
|
|
|
Experiment Manager
|
|
------------------
|
|
|
|
NeMo's Experiment Manager leverages PyTorch Lightning for model checkpointing,
|
|
TensorBoard Logging, and Weights and Biases logging. The Experiment Manager is included by default
|
|
in all NeMo example scripts.
|
|
|
|
.. code-block:: python
|
|
|
|
exp_manager(trainer, cfg.get("exp_manager", None))
|
|
|
|
And is configurable via .yaml with Hydra.
|
|
|
|
.. code-block:: bash
|
|
|
|
exp_manager:
|
|
exp_dir: null
|
|
name: *name
|
|
create_tensorboard_logger: True
|
|
create_checkpoint_callback: True
|
|
|
|
Optionally launch Tensorboard to view training results in ./nemo_experiments (by default).
|
|
|
|
.. code-block:: bash
|
|
|
|
tensorboard --bind_all --logdir nemo_experiments
|
|
|
|
--------
|
|
|
|
Automatic Speech Recognition (ASR)
|
|
==================================
|
|
|
|
Everything needed to train Convolutional ASR models is included with NeMo.
|
|
NeMo supports multiple Speech Recognition architectures, including Jasper and QuartzNet.
|
|
`NeMo Speech Models <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_
|
|
can be trained from scratch on custom datasets or
|
|
fine-tuned using pre-trained checkpoints trained on thousands of hours of audio
|
|
that can be restored for immediate use.
|
|
|
|
Some typical ASR tasks are included with NeMo:
|
|
|
|
- `Audio transcription <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/01_ASR_with_NeMo.ipynb>`_
|
|
- `Byte Pair/Word Piece Training <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/speech_to_text_bpe.py>`_
|
|
- `Speech Commands <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/03_Speech_Commands.ipynb>`_
|
|
- `Voice Activity Detection <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/06_Voice_Activiy_Detection.ipynb>`_
|
|
- `Speaker Recognition <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/speaker_recognition/speaker_reco.py>`_
|
|
|
|
See this `asr notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/asr/01_ASR_with_NeMo.ipynb>`_
|
|
for a full tutorial on doing ASR with NeMo, PyTorch Lightning, and Hydra.
|
|
|
|
Specify ASR Model Configurations with YAML File
|
|
-----------------------------------------------
|
|
|
|
NeMo Models and the PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
|
|
|
|
See this `asr config <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/conf/config.yaml>`_
|
|
for the entire speech to text .yaml file.
|
|
|
|
.. code-block:: yaml
|
|
|
|
# configure the PyTorch Lightning Trainer
|
|
trainer:
|
|
gpus: 0 # number of gpus
|
|
max_epochs: 5
|
|
max_steps: null # computed at runtime if not set
|
|
num_nodes: 1
|
|
accelerator: ddp
|
|
...
|
|
# configure the ASR model
|
|
model:
|
|
...
|
|
encoder:
|
|
cls: nemo.collections.asr.modules.ConvASREncoder
|
|
params:
|
|
feat_in: *n_mels
|
|
activation: relu
|
|
conv_mask: true
|
|
|
|
jasper:
|
|
- filters: 128
|
|
repeat: 1
|
|
kernel: [11]
|
|
stride: [1]
|
|
dilation: [1]
|
|
dropout: *dropout
|
|
...
|
|
# all other configuration, data, optimizer, preprocessor, etc
|
|
...
|
|
|
|
Developing ASR Model From Scratch
|
|
---------------------------------
|
|
|
|
`speech_to_text.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/asr/speech_to_text.py>`_
|
|
|
|
.. code-block:: python
|
|
|
|
# hydra_runner calls hydra.main and is useful for multi-node experiments
|
|
@hydra_runner(config_path="conf", config_name="config")
|
|
def main(cfg):
|
|
trainer = Trainer(**cfg.trainer)
|
|
asr_model = EncDecCTCModel(cfg.model, trainer)
|
|
trainer.fit(asr_model)
|
|
|
|
|
|
Hydra makes every aspect of the NeMo model,
|
|
including the PyTorch Lightning Trainer, customizable from the command line.
|
|
|
|
.. code-block:: bash
|
|
|
|
python NeMo/examples/asr/speech_to_text.py --config-name=quartznet_15x5 \
|
|
trainer.accelerator=gpu \
|
|
trainer.devices=4 \
|
|
trainer.max_epochs=128 \
|
|
+trainer.precision=16 \
|
|
model.train_ds.manifest_filepath=<PATH_TO_DATA>/librispeech-train-all.json \
|
|
model.validation_ds.manifest_filepath=<PATH_TO_DATA>/librispeech-dev-other.json \
|
|
model.train_ds.batch_size=64 \
|
|
+model.validation_ds.num_workers=16 \
|
|
+model.train_ds.num_workers=16
|
|
|
|
.. note:: Training NeMo ASR models can take days/weeks so it is highly recommended to use multiple GPUs and multiple nodes with the PyTorch Lightning Trainer.
|
|
|
|
|
|
Using State-Of-The-Art Pre-trained ASR Model
|
|
--------------------------------------------
|
|
|
|
Transcribe audio with QuartzNet model pretrained on ~3300 hours of audio.
|
|
|
|
.. code-block:: python
|
|
|
|
quartznet = EncDecCTCModel.from_pretrained("QuartzNet15x5Base-En")
|
|
|
|
files = ["path/to/my.wav"] # file duration should be less than 25 seconds
|
|
|
|
for fname, transcription in zip(files, quartznet.transcribe(paths2audio_files=files)):
|
|
print(f"Audio in {fname} was recognized as: {transcription}")
|
|
|
|
To see the available pretrained checkpoints:
|
|
|
|
.. code-block:: python
|
|
|
|
EncDecCTCModel.list_available_models()
|
|
|
|
NeMo ASR Model Under the Hood
|
|
-----------------------------
|
|
|
|
Any aspect of ASR training or model architecture design can easily be customized
|
|
with PyTorch Lightning since every NeMo model is a Lightning Module.
|
|
|
|
.. code-block:: python
|
|
|
|
class EncDecCTCModel(ASRModel):
|
|
"""Base class for encoder decoder CTC-based models."""
|
|
|
|
...
|
|
|
|
def forward(self, input_signal, input_signal_length):
|
|
processed_signal, processed_signal_len = self.preprocessor(
|
|
input_signal=input_signal,
|
|
length=input_signal_length,
|
|
)
|
|
# Spec augment is not applied during evaluation/testing
|
|
if self.spec_augmentation is not None and self.training:
|
|
processed_signal = self.spec_augmentation(input_spec=processed_signal)
|
|
encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_len)
|
|
log_probs = self.decoder(encoder_output=encoded)
|
|
greedy_predictions = log_probs.argmax(dim=-1, keepdim=False)
|
|
return log_probs, encoded_len, greedy_predictions
|
|
|
|
# PTL-specific methods
|
|
def training_step(self, batch, batch_nb):
|
|
audio_signal, audio_signal_len, transcript, transcript_len = batch
|
|
log_probs, encoded_len, predictions = self.forward(
|
|
input_signal=audio_signal, input_signal_length=audio_signal_len
|
|
)
|
|
loss_value = self.loss(
|
|
log_probs=log_probs, targets=transcript, input_lengths=encoded_len, target_lengths=transcript_len
|
|
)
|
|
wer_num, wer_denom = self._wer(predictions, transcript, transcript_len)
|
|
self.log_dict(
|
|
{
|
|
"train_loss": loss_value,
|
|
"training_batch_wer": wer_num / wer_denom,
|
|
"learning_rate": self._optimizer.param_groups[0]["lr"],
|
|
}
|
|
)
|
|
return loss_value
|
|
|
|
Neural Types in NeMo ASR
|
|
------------------------
|
|
|
|
NeMo Models and Neural Modules come with Neural Type checking.
|
|
Neural type checking is extremely useful when combining many different neural
|
|
network architectures for a production-grade application.
|
|
|
|
.. code-block:: python
|
|
|
|
@property
|
|
def input_types(self) -> Optional[Dict[str, NeuralType]]:
|
|
if hasattr(self.preprocessor, "_sample_rate"):
|
|
audio_eltype = AudioSignal(freq=self.preprocessor._sample_rate)
|
|
else:
|
|
audio_eltype = AudioSignal()
|
|
return {
|
|
"input_signal": NeuralType(("B", "T"), audio_eltype),
|
|
"input_signal_length": NeuralType(tuple("B"), LengthsType()),
|
|
}
|
|
|
|
|
|
@property
|
|
def output_types(self) -> Optional[Dict[str, NeuralType]]:
|
|
return {
|
|
"outputs": NeuralType(("B", "T", "D"), LogprobsType()),
|
|
"encoded_lengths": NeuralType(tuple("B"), LengthsType()),
|
|
"greedy_predictions": NeuralType(("B", "T"), LabelsType()),
|
|
}
|
|
|
|
--------
|
|
|
|
Natural Language Processing (NLP)
|
|
=================================
|
|
|
|
Everything needed to finetune BERT-like language models for NLP tasks is included with NeMo.
|
|
`NeMo NLP Models <https://ngc.nvidia.com/catalog/models/nvidia:nemonlpmodels>`_
|
|
include `HuggingFace Transformers <https://github.com/huggingface/transformers>`_
|
|
and `NVIDIA Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_ BERT and Bio-Megatron models.
|
|
NeMo can also be used for pretraining BERT-based language models from HuggingFace.
|
|
|
|
Any of the HuggingFace encoders or Megatron-LM encoders can easily be used for the NLP tasks
|
|
that are included with NeMo:
|
|
|
|
- `Glue Benchmark (All tasks) <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/GLUE_Benchmark.ipynb>`_
|
|
- `Intent Slot Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/intent_slot_classification>`_
|
|
- `Language Modeling (BERT Pretraining) <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb>`_
|
|
- `Question Answering <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Question_Answering_Squad.ipynb>`_
|
|
- `Text Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/text_classification>`_ (including Sentiment Analysis)
|
|
- `Token Classification <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples/nlp/token_classification>`_ (including Named Entity Recognition)
|
|
- `Punctuation and Capitalization <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Punctuation_and_Capitalization.ipynb>`_
|
|
|
|
Named Entity Recognition (NER)
|
|
------------------------------
|
|
|
|
NER (or more generally token classification) is the NLP task of detecting and classifying key information (entities) in text.
|
|
This task is very popular in Healthcare and Finance. In finance, for example, it can be important to identify
|
|
geographical, geopolitical, organizational, persons, events, and natural phenomenon entities.
|
|
See this `NER notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/Token_Classification_Named_Entity_Recognition.ipynb>`_
|
|
for a full tutorial on doing NER with NeMo, PyTorch Lightning, and Hydra.
|
|
|
|
Specify NER Model Configurations with YAML File
|
|
-----------------------------------------------
|
|
|
|
.. note:: NeMo Models and the PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
|
|
|
|
See this `token classification config <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/token_classification/conf/token_classification_config.yaml>`_
|
|
for the entire NER (token classification) .yaml file.
|
|
|
|
.. code-block:: yaml
|
|
|
|
# configure any argument of the PyTorch Lightning Trainer
|
|
trainer:
|
|
gpus: 1 # the number of gpus, 0 for CPU
|
|
num_nodes: 1
|
|
max_epochs: 5
|
|
...
|
|
# configure any aspect of the token classification model here
|
|
model:
|
|
dataset:
|
|
data_dir: ??? # /path/to/data
|
|
class_balancing: null # choose from [null, weighted_loss]. Weighted_loss enables the weighted class balancing of the loss, may be used for handling unbalanced classes
|
|
max_seq_length: 128
|
|
...
|
|
tokenizer:
|
|
tokenizer_name: ${model.language_model.pretrained_model_name} # or sentencepiece
|
|
vocab_file: null # path to vocab file
|
|
...
|
|
# the language model can be from HuggingFace or Megatron-LM
|
|
language_model:
|
|
pretrained_model_name: bert-base-uncased
|
|
lm_checkpoint: null
|
|
...
|
|
# the classifier for the downstream task
|
|
head:
|
|
num_fc_layers: 2
|
|
fc_dropout: 0.5
|
|
activation: 'relu'
|
|
...
|
|
# all other configuration: train/val/test/ data, optimizer, experiment manager, etc
|
|
...
|
|
|
|
Developing NER Model From Scratch
|
|
---------------------------------
|
|
|
|
`token_classification.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/token_classification/token_classification.py>`_
|
|
|
|
.. code-block:: python
|
|
|
|
# hydra_runner calls hydra.main and is useful for multi-node experiments
|
|
@hydra_runner(config_path="conf", config_name="token_classification_config")
|
|
def main(cfg: DictConfig) -> None:
|
|
trainer = L.Trainer(**cfg.trainer)
|
|
model = TokenClassificationModel(cfg.model, trainer=trainer)
|
|
trainer.fit(model)
|
|
|
|
After training, we can do inference with the saved NER model using PyTorch Lightning.
|
|
|
|
Inference from file:
|
|
|
|
.. code-block:: python
|
|
|
|
gpu = 1 if cfg.trainer.gpus != 0 else 0
|
|
trainer = L.Trainer(accelerator="gpu", devices=gpu)
|
|
model.set_trainer(trainer)
|
|
model.evaluate_from_file(
|
|
text_file=os.path.join(cfg.model.dataset.data_dir, cfg.model.validation_ds.text_file),
|
|
labels_file=os.path.join(cfg.model.dataset.data_dir, cfg.model.validation_ds.labels_file),
|
|
output_dir=exp_dir,
|
|
add_confusion_matrix=True,
|
|
normalize_confusion_matrix=True,
|
|
)
|
|
|
|
Or we can run inference on a few examples:
|
|
|
|
.. code-block:: python
|
|
|
|
queries = ["we bought four shirts from the nvidia gear store in santa clara.", "Nvidia is a company in Santa Clara."]
|
|
results = model.add_predictions(queries)
|
|
|
|
for query, result in zip(queries, results):
|
|
logging.info(f"Query : {query}")
|
|
logging.info(f"Result: {result.strip()}\n")
|
|
|
|
Hydra makes every aspect of the NeMo model, including the PyTorch Lightning Trainer, customizable from the command line.
|
|
|
|
.. code-block:: bash
|
|
|
|
python token_classification.py \
|
|
model.language_model.pretrained_model_name=bert-base-cased \
|
|
model.head.num_fc_layers=2 \
|
|
model.dataset.data_dir=/path/to/my/data \
|
|
trainer.max_epochs=5 \
|
|
trainer.accelerator=gpu \
|
|
trainer.devices=[0,1]
|
|
|
|
-----------
|
|
|
|
Tokenizers
|
|
----------
|
|
|
|
Tokenization is the process of converting natural language text into integer arrays
|
|
which can be used for machine learning.
|
|
For NLP tasks, tokenization is an essential part of data preprocessing.
|
|
NeMo supports all BERT-like model tokenizers from
|
|
`HuggingFace's AutoTokenizer <https://huggingface.co/transformers/model_doc/auto.html#autotokenizer>`_
|
|
and also supports `Google's SentencePieceTokenizer <https://github.com/google/sentencepiece>`_
|
|
which can be trained on custom data.
|
|
|
|
To see the list of supported tokenizers:
|
|
|
|
.. code-block:: python
|
|
|
|
from nemo.collections import nlp as nemo_nlp
|
|
|
|
nemo_nlp.modules.get_tokenizer_list()
|
|
|
|
See this `tokenizer notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/02_NLP_Tokenizers.ipynb>`_
|
|
for a full tutorial on using tokenizers in NeMo.
|
|
|
|
Language Models
|
|
---------------
|
|
|
|
Language models are used to extract information from (tokenized) text.
|
|
Much of the state-of-the-art in natural language processing is achieved
|
|
by fine-tuning pretrained language models on the downstream task.
|
|
|
|
With NeMo, you can either `pretrain <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/nlp/language_modeling/bert_pretraining.py>`_
|
|
a BERT model on your data or use a pretrained language model from `HuggingFace Transformers <https://github.com/huggingface/transformers>`_
|
|
or `NVIDIA Megatron-LM <https://github.com/NVIDIA/Megatron-LM>`_.
|
|
|
|
To see the list of language models available in NeMo:
|
|
|
|
.. code-block:: python
|
|
|
|
nemo_nlp.modules.get_pretrained_lm_models_list(include_external=True)
|
|
|
|
Easily switch between any language model in the above list by using `.get_lm_model`.
|
|
|
|
.. code-block:: python
|
|
|
|
nemo_nlp.modules.get_lm_model(pretrained_model_name="distilbert-base-uncased")
|
|
|
|
See this `language model notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/nlp/01_Pretrained_Language_Models_for_Downstream_Tasks.ipynb>`_
|
|
for a full tutorial on using pretrained language models in NeMo.
|
|
|
|
Using a Pre-trained NER Model
|
|
-----------------------------
|
|
|
|
NeMo has pre-trained NER models that can be used
|
|
to get started with Token Classification right away.
|
|
Models are automatically downloaded from NGC,
|
|
cached locally to disk,
|
|
and loaded into GPU memory using the `.from_pretrained` method.
|
|
|
|
.. code-block:: python
|
|
|
|
# load pre-trained NER model
|
|
pretrained_ner_model = TokenClassificationModel.from_pretrained(model_name="NERModel")
|
|
|
|
# define the list of queries for inference
|
|
queries = [
|
|
"we bought four shirts from the nvidia gear store in santa clara.",
|
|
"Nvidia is a company.",
|
|
"The Adventures of Tom Sawyer by Mark Twain is an 1876 novel about a young boy growing "
|
|
+ "up along the Mississippi River.",
|
|
]
|
|
results = pretrained_ner_model.add_predictions(queries)
|
|
|
|
for query, result in zip(queries, results):
|
|
print()
|
|
print(f"Query : {query}")
|
|
print(f"Result: {result.strip()}\n")
|
|
|
|
NeMo NER Model Under the Hood
|
|
-----------------------------
|
|
|
|
Any aspect of NLP training or model architecture design can easily be customized with PyTorch Lightning
|
|
since every NeMo model is a Lightning Module.
|
|
|
|
.. code-block:: python
|
|
|
|
class TokenClassificationModel(ModelPT):
|
|
"""
|
|
Token Classification Model with BERT, applicable for tasks such as Named Entity Recognition
|
|
"""
|
|
|
|
...
|
|
|
|
def forward(self, input_ids, token_type_ids, attention_mask):
|
|
hidden_states = self.bert_model(
|
|
input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask
|
|
)
|
|
logits = self.classifier(hidden_states=hidden_states)
|
|
return logits
|
|
|
|
# PTL-specific methods
|
|
def training_step(self, batch, batch_idx):
|
|
"""
|
|
Lightning calls this inside the training loop with the data from the training dataloader
|
|
passed in as `batch`.
|
|
"""
|
|
input_ids, input_type_ids, input_mask, subtokens_mask, loss_mask, labels = batch
|
|
logits = self(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask)
|
|
|
|
loss = self.loss(logits=logits, labels=labels, loss_mask=loss_mask)
|
|
self.log_dict({"train_loss": loss, "lr": self._optimizer.param_groups[0]["lr"]})
|
|
return loss
|
|
|
|
...
|
|
|
|
Neural Types in NeMo NLP
|
|
------------------------
|
|
|
|
NeMo Models and Neural Modules come with Neural Type checking.
|
|
Neural type checking is extremely useful when combining many different neural network architectures
|
|
for a production-grade application.
|
|
|
|
.. code-block:: python
|
|
|
|
@property
|
|
def input_types(self) -> Optional[Dict[str, NeuralType]]:
|
|
return self.bert_model.input_types
|
|
|
|
|
|
@property
|
|
def output_types(self) -> Optional[Dict[str, NeuralType]]:
|
|
return self.classifier.output_types
|
|
|
|
--------
|
|
|
|
Text-To-Speech (TTS)
|
|
====================
|
|
|
|
Everything needed to train TTS models and generate audio is included with NeMo.
|
|
`NeMo TTS Models <https://ngc.nvidia.com/catalog/models/nvidia:nemottsmodels>`_
|
|
can be trained from scratch on your own data or pretrained models can be downloaded
|
|
automatically. NeMo currently supports a two step inference procedure.
|
|
First, a model is used to generate a mel spectrogram from text.
|
|
Second, a model is used to generate audio from a mel spectrogram.
|
|
|
|
Mel Spectrogram Generators:
|
|
|
|
- `Tacotron 2 <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/tacotron2.py>`_
|
|
- `Glow-TTS <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/glow_tts.py>`_
|
|
|
|
Audio Generators:
|
|
|
|
- Griffin-Lim
|
|
- `WaveGlow <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/waveglow.py>`_
|
|
- `SqueezeWave <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/squeezewave.py>`_
|
|
|
|
|
|
Specify TTS Model Configurations with YAML File
|
|
-----------------------------------------------
|
|
|
|
.. note:: NeMo Models and PyTorch Lightning Trainer can be fully configured from .yaml files using Hydra.
|
|
|
|
`tts/conf/glow_tts.yaml <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/conf/glow_tts.yaml>`_
|
|
|
|
.. code-block:: yaml
|
|
|
|
# configure the PyTorch Lightning Trainer
|
|
trainer:
|
|
gpus: -1 # number of gpus
|
|
max_epochs: 350
|
|
num_nodes: 1
|
|
accelerator: ddp
|
|
...
|
|
|
|
# configure the TTS model
|
|
model:
|
|
...
|
|
encoder:
|
|
cls: nemo.collections.tts.modules.glow_tts.TextEncoder
|
|
params:
|
|
n_vocab: 148
|
|
out_channels: *n_mels
|
|
hidden_channels: 192
|
|
filter_channels: 768
|
|
filter_channels_dp: 256
|
|
...
|
|
# all other configuration, data, optimizer, parser, preprocessor, etc
|
|
...
|
|
|
|
Developing TTS Model From Scratch
|
|
---------------------------------
|
|
|
|
`tts/glow_tts.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/examples/tts/glow_tts.py>`_
|
|
|
|
.. code-block:: python
|
|
|
|
# hydra_runner calls hydra.main and is useful for multi-node experiments
|
|
@hydra_runner(config_path="conf", config_name="glow_tts")
|
|
def main(cfg):
|
|
trainer = L.Trainer(**cfg.trainer)
|
|
model = GlowTTSModel(cfg=cfg.model, trainer=trainer)
|
|
trainer.fit(model)
|
|
|
|
Hydra makes every aspect of the NeMo model, including the PyTorch Lightning Trainer, customizable from the command line.
|
|
|
|
.. code-block:: bash
|
|
|
|
python NeMo/examples/tts/glow_tts.py \
|
|
trainer.accelerator=gpu \
|
|
trainer.devices=4 \
|
|
trainer.max_epochs=400 \
|
|
...
|
|
train_dataset=/path/to/train/data \
|
|
validation_datasets=/path/to/val/data \
|
|
model.train_ds.batch_size = 64 \
|
|
|
|
.. note:: Training NeMo TTS models from scratch can take days or weeks so it is highly recommended to use multiple GPUs and multiple nodes with the PyTorch Lightning Trainer.
|
|
|
|
Using State-Of-The-Art Pre-trained TTS Model
|
|
--------------------------------------------
|
|
|
|
Generate speech using models trained on `LJSpeech <https://keithito.com/LJ-Speech-Dataset/>`,
|
|
around 24 hours of single speaker data.
|
|
|
|
See this `TTS notebook <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/tutorials/tts/1_TTS_inference.ipynb>`_
|
|
for a full tutorial on generating speech with NeMo, PyTorch Lightning, and Hydra.
|
|
|
|
.. code-block:: python
|
|
|
|
# load pretrained spectrogram model
|
|
spec_gen = SpecModel.from_pretrained("GlowTTS-22050Hz").cuda()
|
|
|
|
# load pretrained Generators
|
|
vocoder = WaveGlowModel.from_pretrained("WaveGlow-22050Hz").cuda()
|
|
|
|
|
|
def infer(spec_gen_model, vocder_model, str_input):
|
|
with torch.no_grad():
|
|
parsed = spec_gen.parse(text_to_generate)
|
|
spectrogram = spec_gen.generate_spectrogram(tokens=parsed)
|
|
audio = vocoder.convert_spectrogram_to_audio(spec=spectrogram)
|
|
if isinstance(spectrogram, torch.Tensor):
|
|
spectrogram = spectrogram.to("cpu").numpy()
|
|
if len(spectrogram.shape) == 3:
|
|
spectrogram = spectrogram[0]
|
|
if isinstance(audio, torch.Tensor):
|
|
audio = audio.to("cpu").numpy()
|
|
return spectrogram, audio
|
|
|
|
|
|
text_to_generate = input("Input what you want the model to say: ")
|
|
spec, audio = infer(spec_gen, vocoder, text_to_generate)
|
|
|
|
To see the available pretrained checkpoints:
|
|
|
|
.. code-block:: python
|
|
|
|
# spec generator
|
|
GlowTTSModel.list_available_models()
|
|
|
|
# vocoder
|
|
WaveGlowModel.list_available_models()
|
|
|
|
NeMo TTS Model Under the Hood
|
|
-----------------------------
|
|
|
|
Any aspect of TTS training or model architecture design can easily
|
|
be customized with PyTorch Lightning since every NeMo model is a LightningModule.
|
|
|
|
`glow_tts.py <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/nemo/collections/tts/models/glow_tts.py>`_
|
|
|
|
.. code-block:: python
|
|
|
|
class GlowTTSModel(SpectrogramGenerator):
|
|
"""
|
|
GlowTTS model used to generate spectrograms from text
|
|
Consists of a text encoder and an invertible spectrogram decoder
|
|
"""
|
|
|
|
...
|
|
|
|
# NeMo models come with neural type checking
|
|
@typecheck(
|
|
input_types={
|
|
"x": NeuralType(("B", "T"), TokenIndex()),
|
|
"x_lengths": NeuralType(("B"), LengthsType()),
|
|
"y": NeuralType(("B", "D", "T"), MelSpectrogramType(), optional=True),
|
|
"y_lengths": NeuralType(("B"), LengthsType(), optional=True),
|
|
"gen": NeuralType(optional=True),
|
|
"noise_scale": NeuralType(optional=True),
|
|
"length_scale": NeuralType(optional=True),
|
|
}
|
|
)
|
|
def forward(self, *, x, x_lengths, y=None, y_lengths=None, gen=False, noise_scale=0.3, length_scale=1.0):
|
|
if gen:
|
|
return self.glow_tts.generate_spect(
|
|
text=x, text_lengths=x_lengths, noise_scale=noise_scale, length_scale=length_scale
|
|
)
|
|
else:
|
|
return self.glow_tts(text=x, text_lengths=x_lengths, spect=y, spect_lengths=y_lengths)
|
|
|
|
...
|
|
|
|
def step(self, y, y_lengths, x, x_lengths):
|
|
z, y_m, y_logs, logdet, logw, logw_, y_lengths, attn = self(
|
|
x=x, x_lengths=x_lengths, y=y, y_lengths=y_lengths, gen=False
|
|
)
|
|
|
|
l_mle, l_length, logdet = self.loss(
|
|
z=z,
|
|
y_m=y_m,
|
|
y_logs=y_logs,
|
|
logdet=logdet,
|
|
logw=logw,
|
|
logw_=logw_,
|
|
x_lengths=x_lengths,
|
|
y_lengths=y_lengths,
|
|
)
|
|
|
|
loss = sum([l_mle, l_length])
|
|
|
|
return l_mle, l_length, logdet, loss, attn
|
|
|
|
# PTL-specific methods
|
|
def training_step(self, batch, batch_idx):
|
|
y, y_lengths, x, x_lengths = batch
|
|
|
|
y, y_lengths = self.preprocessor(input_signal=y, length=y_lengths)
|
|
|
|
l_mle, l_length, logdet, loss, _ = self.step(y, y_lengths, x, x_lengths)
|
|
|
|
self.log_dict({"l_mle": l_mle, "l_length": l_length, "logdet": logdet}, prog_bar=True)
|
|
return loss
|
|
|
|
...
|
|
|
|
Neural Types in NeMo TTS
|
|
------------------------
|
|
|
|
NeMo Models and Neural Modules come with Neural Type checking.
|
|
Neural type checking is extremely useful when combining many different neural network architectures
|
|
for a production-grade application.
|
|
|
|
.. code-block:: python
|
|
|
|
@typecheck(
|
|
input_types={
|
|
"x": NeuralType(("B", "T"), TokenIndex()),
|
|
"x_lengths": NeuralType(("B"), LengthsType()),
|
|
"y": NeuralType(("B", "D", "T"), MelSpectrogramType(), optional=True),
|
|
"y_lengths": NeuralType(("B"), LengthsType(), optional=True),
|
|
"gen": NeuralType(optional=True),
|
|
"noise_scale": NeuralType(optional=True),
|
|
"length_scale": NeuralType(optional=True),
|
|
}
|
|
)
|
|
def forward(self, *, x, x_lengths, y=None, y_lengths=None, gen=False, noise_scale=0.3, length_scale=1.0):
|
|
...
|
|
|
|
--------
|
|
|
|
Learn More
|
|
==========
|
|
|
|
- Watch the `NVIDIA NeMo Intro Video <https://youtu.be/wBgpMf_KQVw>`_
|
|
- Watch the `PyTorch Lightning and NVIDIA NeMo Discussion Video <https://youtu.be/rFAX1-4DSr4>`_
|
|
- Visit the `NVIDIA NeMo Developer Website <https://developer.nvidia.com/nvidia-nemo>`_
|
|
- Read the `NVIDIA NeMo PyTorch Blog <https://medium.com/pytorch/nvidia-nemo-neural-modules-and-models-for-conversational-ai-d660480d9696>`_
|
|
- Download pre-trained `ASR <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_, `NLP <https://ngc.nvidia.com/catalog/models/nvidia:nemonlpmodels>`_, and `TTS <https://ngc.nvidia.com/catalog/models/nvidia:nemospeechmodels>`_ models on `NVIDIA NGC <https://ngc.nvidia.com/>`_ to quickly get started with NeMo.
|
|
- Become an expert on Building Conversational AI applications with our `tutorials <https://github.com/NVIDIA/NeMo#tutorials>`_, and `example scripts <https://github.com/NVIDIA/NeMo/tree/v1.0.0b1/examples>`_,
|
|
- See our `developer guide <https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/main/>`_ for more information on core NeMo concepts, ASR/NLP/TTS collections, and the NeMo API.
|
|
|
|
.. note:: NeMo tutorial notebooks can be run on `Google Colab <https://colab.research.google.com/notebooks/intro.ipynb>`_.
|
|
|
|
NVIDIA `NeMo <https://github.com/NVIDIA/NeMo>`_ is actively being developed on GitHub.
|
|
`Contributions <https://github.com/NVIDIA/NeMo/blob/v1.0.0b1/CONTRIBUTING.md>`_ are welcome!
|