615 lines
25 KiB
Python
615 lines
25 KiB
Python
#
|
|
# Configuration file for the Sphinx documentation builder.
|
|
#
|
|
# This file does only contain a selection of the most common options. For a
|
|
# full list see the documentation:
|
|
# http://www.sphinx-doc.org/en/master/config
|
|
|
|
# -- Path setup --------------------------------------------------------------
|
|
|
|
# If extensions (or modules to document with autodoc) are in another directory,
|
|
# add these directories to sys.path here. If the directory is relative to the
|
|
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
|
|
|
import glob
|
|
import os
|
|
import shutil
|
|
import urllib.request
|
|
import warnings
|
|
from importlib.util import module_from_spec, spec_from_file_location
|
|
from types import ModuleType
|
|
|
|
import lai_sphinx_theme
|
|
from lightning_utilities.docs import fetch_external_assets
|
|
from lightning_utilities.docs.formatting import _transform_changelog
|
|
|
|
import lightning
|
|
|
|
# -----------------------
|
|
# VARIABLES WHEN WORKING ON DOCS... MAKE THIS TRUE TO BUILD FASTER
|
|
# -----------------------
|
|
_SPHINX_MOCK_REQUIREMENTS = int(os.environ.get("SPHINX_MOCK_REQUIREMENTS", True))
|
|
_FAST_DOCS_DEV = int(os.getenv("FAST_DOCS_DEV", True))
|
|
_COPY_NOTEBOOKS = int(os.getenv("DOCS_COPY_NOTEBOOKS", not _FAST_DOCS_DEV))
|
|
_FETCH_S3_ASSETS = int(os.getenv("DOCS_FETCH_ASSETS", not _FAST_DOCS_DEV))
|
|
|
|
# -----------------------
|
|
# BUILD stuff
|
|
# -----------------------
|
|
_PATH_HERE = os.path.abspath(os.path.dirname(__file__))
|
|
_PATH_ROOT = os.path.join(_PATH_HERE, "..", "..")
|
|
_PATH_RAW_NB = os.path.join(_PATH_ROOT, "_notebooks")
|
|
_PATH_RAW_NB_ACTIONS = os.path.join(_PATH_RAW_NB, ".actions")
|
|
_FOLDER_GENERATED = "generated"
|
|
|
|
|
|
def _load_py_module(name: str, location: str) -> ModuleType:
|
|
spec = spec_from_file_location(name, location)
|
|
py = module_from_spec(spec)
|
|
spec.loader.exec_module(py)
|
|
return py
|
|
|
|
|
|
assist_local = _load_py_module("assistant", os.path.join(_PATH_ROOT, ".actions", "assistant.py"))
|
|
if os.path.isdir(_PATH_RAW_NB_ACTIONS):
|
|
assist_nb = _load_py_module("assistant", os.path.join(_PATH_RAW_NB_ACTIONS, "assistant.py"))
|
|
else:
|
|
_COPY_NOTEBOOKS = False
|
|
warnings.warn(
|
|
"To build full docs you need to include also tutorials/notebooks from submodule code."
|
|
" Please run: `git submodule update --init --recursive`",
|
|
stacklevel=2,
|
|
)
|
|
|
|
|
|
# -- Project documents -------------------------------------------------------
|
|
|
|
if _COPY_NOTEBOOKS:
|
|
assist_nb.AssistantCLI.copy_notebooks(
|
|
_PATH_RAW_NB,
|
|
_PATH_HERE,
|
|
"notebooks",
|
|
patterns=[".", "course_UvA-DL", "lightning_examples"],
|
|
# TODO(@aniketmaurya): Complete converting the missing items and add them back
|
|
ignore=[
|
|
# "course_UvA-DL/13-contrastive-learning",
|
|
"lightning_examples/warp-drive",
|
|
],
|
|
)
|
|
|
|
|
|
os.makedirs(os.path.join(_PATH_HERE, _FOLDER_GENERATED), exist_ok=True)
|
|
# copy all documents from GH templates like contribution guide
|
|
for md in glob.glob(os.path.join(_PATH_ROOT, ".github", "*.md")):
|
|
shutil.copy(md, os.path.join(_PATH_HERE, _FOLDER_GENERATED, os.path.basename(md)))
|
|
# copy also the changelog
|
|
_transform_changelog(
|
|
os.path.join(_PATH_ROOT, "src", "lightning", "fabric", "CHANGELOG.md"),
|
|
os.path.join(_PATH_HERE, _FOLDER_GENERATED, "CHANGELOG.md"),
|
|
)
|
|
|
|
# Copy Accelerator docs
|
|
assist_local.AssistantCLI.pull_docs_files(
|
|
gh_user_repo="Lightning-AI/lightning-Habana",
|
|
target_dir="docs/source-pytorch/integrations/hpu",
|
|
checkout="refs/tags/1.4.0",
|
|
)
|
|
|
|
# Copy strategies docs as single pages
|
|
assist_local.AssistantCLI.pull_docs_files(
|
|
gh_user_repo="Lightning-Universe/lightning-Hivemind",
|
|
target_dir="docs/source-pytorch/integrations/strategies",
|
|
checkout="3b14f766200aff8fe7153be19a7bd92440dea3cf", # this is post release version including moved overview page
|
|
single_page="overview.rst",
|
|
)
|
|
|
|
if _FETCH_S3_ASSETS:
|
|
fetch_external_assets(
|
|
docs_folder=_PATH_HERE,
|
|
assets_folder="_static/fetched-s3-assets",
|
|
retrieve_pattern=r"https?://[-a-zA-Z0-9_]+\.s3\.[-a-zA-Z0-9()_\\+.\\/=]+",
|
|
)
|
|
|
|
|
|
# -- Project information -----------------------------------------------------
|
|
|
|
project = "PyTorch Lightning"
|
|
copyright = lightning.__copyright__
|
|
author = lightning.__author__
|
|
|
|
# The short X.Y version
|
|
version = lightning.__version__
|
|
# The full version, including alpha/beta/rc tags
|
|
release = lightning.__version__
|
|
|
|
# -- General configuration ---------------------------------------------------
|
|
|
|
# If your documentation needs a minimal Sphinx version, state it here.
|
|
|
|
needs_sphinx = "5.3"
|
|
|
|
# Add any Sphinx extension module names here, as strings. They can be
|
|
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
|
# ones.
|
|
extensions = [
|
|
"sphinx.ext.autodoc",
|
|
"sphinx.ext.doctest",
|
|
"sphinx.ext.intersphinx",
|
|
"sphinx_toolbox.collapse",
|
|
"sphinx.ext.todo",
|
|
"sphinx.ext.coverage",
|
|
"sphinx.ext.viewcode",
|
|
"sphinx.ext.autosummary",
|
|
"sphinx.ext.napoleon",
|
|
"sphinx.ext.imgmath",
|
|
"sphinx.ext.autosectionlabel",
|
|
# 'sphinxcontrib.mockautodoc', # raises error: directive 'automodule' is already registered ...
|
|
# 'sphinxcontrib.fulltoc', # breaks pytorch-theme with unexpected kw argument 'titles_only'
|
|
"sphinxcontrib.video",
|
|
"myst_parser",
|
|
"nbsphinx",
|
|
"sphinx_autodoc_typehints",
|
|
"sphinx_copybutton",
|
|
"sphinx_paramlinks",
|
|
"sphinx_togglebutton",
|
|
"lai_sphinx_theme.extensions.lightning",
|
|
]
|
|
|
|
# Suppress warnings about duplicate labels (needed for PL tutorials)
|
|
suppress_warnings = [
|
|
"autosectionlabel.*",
|
|
]
|
|
|
|
copybutton_prompt_text = ">>> "
|
|
copybutton_prompt_text1 = "... "
|
|
copybutton_exclude = ".linenos"
|
|
|
|
copybutton_only_copy_prompt_lines = True
|
|
|
|
# Add any paths that contain templates here, relative to this directory.
|
|
templates_path = ["_templates"]
|
|
|
|
# https://berkeley-stat159-f17.github.io/stat159-f17/lectures/14-sphinx..html#conf.py-(cont.)
|
|
# https://stackoverflow.com/questions/38526888/embed-ipython-notebook-in-sphinx-document
|
|
# I execute the notebooks manually in advance. If notebooks test the code,
|
|
# they should be run at build time.
|
|
nbsphinx_execute = "never"
|
|
nbsphinx_allow_errors = True
|
|
nbsphinx_requirejs_path = ""
|
|
|
|
# myst-parser, forcing to parse all html pages with mathjax
|
|
# https://github.com/executablebooks/MyST-Parser/issues/394
|
|
myst_update_mathjax = False
|
|
# https://myst-parser.readthedocs.io/en/latest/syntax/optional.html?highlight=anchor#auto-generated-header-anchors
|
|
myst_heading_anchors = 3
|
|
|
|
# The suffix(es) of source filenames.
|
|
# You can specify multiple suffix as a list of string:
|
|
#
|
|
source_parsers = {".rst": "restructuredtext", ".txt": "markdown", ".md": "markdown", ".ipynb": "nbsphinx"}
|
|
|
|
# The master toctree document.
|
|
master_doc = "index"
|
|
|
|
# The language for content autogenerated by Sphinx. Refer to documentation
|
|
# for a list of supported languages.
|
|
#
|
|
# This is also used if you do content translation via gettext catalogs.
|
|
# Usually you set "language" from the command line for these cases.
|
|
language = "en"
|
|
|
|
# List of patterns, relative to source directory, that match files and
|
|
# directories to ignore when looking for source files.
|
|
# This pattern also affects html_static_path and html_extra_path.
|
|
exclude_patterns = [
|
|
f"{_FOLDER_GENERATED}/PULL_REQUEST_TEMPLATE.md",
|
|
"notebooks/sample-template*",
|
|
]
|
|
|
|
if not _COPY_NOTEBOOKS:
|
|
exclude_patterns.append("notebooks/*")
|
|
exclude_patterns.append("tutorials.rst")
|
|
|
|
|
|
# The name of the Pygments (syntax highlighting) style to use.
|
|
pygments_style = None
|
|
|
|
# -- Options for HTML output -------------------------------------------------
|
|
|
|
# The theme to use for HTML and HTML Help pages. See the documentation for
|
|
# a list of builtin themes.
|
|
# http://www.sphinx-doc.org/en/master/usage/theming.html#builtin-themes
|
|
# html_theme = 'bizstyle'
|
|
# https://sphinx-themes.org
|
|
html_theme = "lai_sphinx_theme"
|
|
html_theme_path = [os.environ.get("LIT_SPHINX_PATH", lai_sphinx_theme.get_html_theme_path())]
|
|
|
|
# Theme options are theme-specific and customize the look and feel of a theme
|
|
# further. For a list of options available for each theme, see the
|
|
# documentation.
|
|
|
|
html_theme_options = {
|
|
"pytorch_project": "https://lightning.ai",
|
|
"canonical_url": lightning.__docs_url__,
|
|
"collapse_navigation": False,
|
|
"display_version": True,
|
|
"logo_only": False,
|
|
}
|
|
|
|
html_logo = "_static/images/logo.svg"
|
|
|
|
html_favicon = "_static/images/icon.svg"
|
|
|
|
# Add any paths that contain custom static files (such as style sheets) here,
|
|
# relative to this directory. They are copied after the builtin static files,
|
|
# so a file named "default.css" will overwrite the builtin "default.css".
|
|
html_static_path = ["_templates", "_static"]
|
|
|
|
# Custom sidebar templates, must be a dictionary that maps document names
|
|
# to template names.
|
|
#
|
|
# The default sidebars (for documents that don't match any pattern) are
|
|
# defined by theme itself. Builtin themes are using these templates by
|
|
# default: ``['localtoc.html', 'relations.html', 'sourcelink.html',
|
|
# 'searchbox.html']``.
|
|
#
|
|
# html_sidebars = {}
|
|
|
|
# -- Options for HTMLHelp output ---------------------------------------------
|
|
|
|
# Output file base name for HTML help builder.
|
|
htmlhelp_basename = project + "-doc"
|
|
|
|
# -- Options for LaTeX output ------------------------------------------------
|
|
|
|
latex_elements = {
|
|
# The paper size ('letterpaper' or 'a4paper').
|
|
# 'papersize': 'letterpaper',
|
|
# The font size ('10pt', '11pt' or '12pt').
|
|
# 'pointsize': '10pt',
|
|
# Additional stuff for the LaTeX preamble.
|
|
# 'preamble': '',
|
|
# Latex figure (float) alignment
|
|
"figure_align": "htbp"
|
|
}
|
|
|
|
# Grouping the document tree into LaTeX files. List of tuples
|
|
# (source start file, target name, title,
|
|
# author, documentclass [howto, manual, or own class]).
|
|
latex_documents = [(master_doc, project + ".tex", project + " Documentation", author, "manual")]
|
|
|
|
# -- Options for manual page output ------------------------------------------
|
|
|
|
# One entry per manual page. List of tuples
|
|
# (source start file, name, description, authors, manual section).
|
|
man_pages = [(master_doc, project, project + " Documentation", [author], 1)]
|
|
|
|
# -- Options for Texinfo output ----------------------------------------------
|
|
|
|
# Grouping the document tree into Texinfo files. List of tuples
|
|
# (source start file, target name, title, author,
|
|
# dir menu entry, description, category)
|
|
texinfo_documents = [
|
|
(
|
|
master_doc,
|
|
project,
|
|
project + " Documentation",
|
|
author,
|
|
project,
|
|
"One line description of project.",
|
|
"Miscellaneous",
|
|
)
|
|
]
|
|
|
|
# -- Options for Epub output -------------------------------------------------
|
|
|
|
# Bibliographic Dublin Core info.
|
|
epub_title = project
|
|
|
|
# The unique identifier of the text. This can be a ISBN number
|
|
# or the project homepage.
|
|
#
|
|
# epub_identifier = ''
|
|
|
|
# A unique identification for the text.
|
|
#
|
|
# epub_uid = ''
|
|
|
|
# A list of files that should not be packed into the epub file.
|
|
epub_exclude_files = ["search.html"]
|
|
|
|
# -- Extension configuration -------------------------------------------------
|
|
|
|
# -- Options for intersphinx extension ---------------------------------------
|
|
|
|
intersphinx_mapping = {
|
|
"python": ("https://docs.python.org/3", None),
|
|
"torch": ("https://pytorch.org/docs/stable/", None),
|
|
"numpy": ("https://numpy.org/doc/stable/", None),
|
|
"PIL": ("https://pillow.readthedocs.io/en/stable/", None),
|
|
"torchmetrics": ("https://torchmetrics.readthedocs.io/en/stable/", None),
|
|
"lightning_habana": ("https://lightning-ai.github.io/lightning-Habana/", None),
|
|
"tensorboardX": ("https://tensorboardx.readthedocs.io/en/stable/", None),
|
|
# needed for referencing App from lightning scope
|
|
"lightning.app": ("https://lightning.ai/docs/app/stable/", None),
|
|
# needed for referencing Fabric from lightning scope
|
|
"lightning.fabric": ("https://lightning.ai/docs/fabric/stable/", None),
|
|
# TODO: these are missing objects.inv
|
|
# "comet_ml": ("https://www.comet.com/docs/v2/", None),
|
|
# "neptune": ("https://docs.neptune.ai/", None),
|
|
# "wandb": ("https://docs.wandb.ai//", None),
|
|
}
|
|
nitpicky = True
|
|
|
|
|
|
nitpick_ignore = [
|
|
("py:class", "typing.Self"),
|
|
# missing in generated API
|
|
("py:exc", "MisconfigurationException"),
|
|
# TODO: generated list of all existing ATM, need to be fixed
|
|
("py:class", "AveragedModel"),
|
|
("py:class", "CometExperiment"),
|
|
("py:meth", "DataModule.__init__"),
|
|
("py:class", "HPUAccelerator"),
|
|
("py:class", "Tensor"),
|
|
("py:class", "_PATH"),
|
|
("py:func", "add_argument"),
|
|
("py:func", "add_class_arguments"),
|
|
("py:meth", "apply_to_collection"),
|
|
("py:attr", "best_model_path"),
|
|
("py:attr", "best_model_score"),
|
|
("py:attr", "checkpoint_path"),
|
|
("py:class", "comet_ml.ExistingExperiment"),
|
|
("py:class", "comet_ml.Experiment"),
|
|
("py:class", "comet_ml.OfflineExperiment"),
|
|
("py:meth", "deepspeed.DeepSpeedEngine.backward"),
|
|
("py:attr", "example_input_array"),
|
|
("py:class", "jsonargparse._core.ArgumentParser"),
|
|
("py:class", "jsonargparse._namespace.Namespace"),
|
|
("py:class", "jsonargparse.core.ArgumentParser"),
|
|
("py:class", "jsonargparse.namespace.Namespace"),
|
|
("py:class", "transformer_engine.common.recipe.DelayedScaling"),
|
|
("py:class", "lightning.fabric.accelerators.xla.XLAAccelerator"),
|
|
("py:class", "lightning.fabric.loggers.csv_logs._ExperimentWriter"),
|
|
("py:class", "lightning.fabric.loggers.logger._DummyExperiment"),
|
|
("py:class", "lightning.fabric.plugins.precision.transformer_engine.TransformerEnginePrecision"),
|
|
("py:class", "lightning.fabric.plugins.precision.bitsandbytes.BitsandbytesPrecision"),
|
|
("py:class", "lightning.fabric.utilities.data.AttributeDict"),
|
|
("py:class", "lightning.fabric.utilities.device_dtype_mixin._DeviceDtypeModuleMixin"),
|
|
("py:func", "lightning.fabric.utilities.seed.seed_everything"),
|
|
("py:class", "lightning.fabric.utilities.types.LRScheduler"),
|
|
("py:class", "lightning.fabric.utilities.types.ReduceLROnPlateau"),
|
|
("py:class", "lightning.fabric.utilities.types.Steppable"),
|
|
("py:class", "lightning.fabric.wrappers._FabricOptimizer"),
|
|
("py:class", "lightning.fabric.utilities.throughput.Throughput"),
|
|
("py:func", "lightning.fabric.utilities.throughput.measure_flops"),
|
|
("py:class", "lightning.fabric.utilities.spike.SpikeDetection"),
|
|
("py:meth", "lightning.pytorch.Callback.on_exception"),
|
|
("py:class", "lightning.pytorch.LightningModule"),
|
|
("py:meth", "lightning.pytorch.LightningModule.on_train_epoch_end"),
|
|
("py:meth", "lightning.pytorch.LightningModule.on_validation_epoch_end"),
|
|
("py:meth", "lightning.pytorch.LightningModule.save_hyperparameters"),
|
|
("py:meth", "lightning.pytorch.LightningModule.test_step"),
|
|
("py:meth", "lightning.pytorch.LightningModule.training_step"),
|
|
("py:meth", "lightning.pytorch.LightningModule.validation_step"),
|
|
("py:obj", "lightning.pytorch.accelerators.MPSAccelerator"),
|
|
("py:meth", "lightning.pytorch.accelerators.accelerator.Accelerator.register_accelerators"),
|
|
("py:paramref", "lightning.pytorch.callbacks.Checkpoint._sphinx_paramlinks_save_top_k"),
|
|
("py:func", "lightning.pytorch.callbacks.RichProgressBar.configure_columns"),
|
|
("py:meth", "lightning.pytorch.callbacks.callback.Callback.on_load_checkpoint"),
|
|
("py:meth", "lightning.pytorch.callbacks.callback.Callback.on_save_checkpoint"),
|
|
("py:class", "lightning.pytorch.callbacks.checkpoint.Checkpoint"),
|
|
("py:meth", "lightning.pytorch.callbacks.progress.progress_bar.ProgressBar.get_metrics"),
|
|
("py:class", "lightning.pytorch.callbacks.progress.rich_progress.RichProgressBarTheme"),
|
|
("py:class", "lightning.pytorch.callbacks.progress.tqdm_progress.Tqdm"),
|
|
("py:class", "lightning.pytorch.cli.ReduceLROnPlateau"),
|
|
("py:meth", "lightning.pytorch.core.LightningDataModule.setup"),
|
|
("py:meth", "lightning.pytorch.core.LightningModule.configure_model"),
|
|
("py:meth", "lightning.pytorch.core.LightningModule.save_hyperparameters"),
|
|
("py:meth", "lightning.pytorch.core.LightningModule.setup"),
|
|
("py:meth", "lightning.pytorch.core.hooks.ModelHooks.on_after_batch_transfer"),
|
|
("py:meth", "lightning.pytorch.core.hooks.ModelHooks.setup"),
|
|
("py:meth", "lightning.pytorch.core.hooks.ModelHooks.transfer_batch_to_device"),
|
|
("py:meth", "lightning.pytorch.core.mixins.hparams_mixin.HyperparametersMixin.save_hyperparameters"),
|
|
("py:class", "lightning.pytorch.loggers.Logger"),
|
|
("py:func", "lightning.pytorch.loggers.logger.rank_zero_experiment"),
|
|
("py:class", "lightning.pytorch.plugins.environments.cluster_environment.ClusterEnvironment"),
|
|
("py:class", "lightning.pytorch.plugins.environments.slurm_environment.SLURMEnvironment"),
|
|
("py:class", "lightning.pytorch.plugins.io.wrapper._WrappingCheckpointIO"),
|
|
("py:func", "lightning.pytorch.seed_everything"),
|
|
("py:class", "lightning.pytorch.serve.servable_module.ServableModule"),
|
|
("py:class", "lightning.pytorch.serve.servable_module_validator.ServableModuleValidator"),
|
|
("py:mod", "lightning.pytorch.strategies"),
|
|
("py:class", "lightning.pytorch.strategies.SingleXLAStrategy"),
|
|
("py:meth", "lightning.pytorch.strategies.ddp.DDPStrategy.configure_ddp"),
|
|
("py:meth", "lightning.pytorch.strategies.ddp.DDPStrategy.setup_distributed"),
|
|
("py:meth", "lightning.pytorch.trainer.trainer.Trainer.lightning_module"),
|
|
("py:class", "lightning.pytorch.tuner.lr_finder._LRFinder"),
|
|
("py:class", "lightning.pytorch.utilities.CombinedLoader"),
|
|
("py:obj", "lightning.pytorch.utilities.deepspeed.ds_checkpoint_dir"),
|
|
("py:obj", "lightning.pytorch.utilities.memory.is_cuda_out_of_memory"),
|
|
("py:obj", "lightning.pytorch.utilities.memory.is_cudnn_snafu"),
|
|
("py:obj", "lightning.pytorch.utilities.memory.is_oom_error"),
|
|
("py:obj", "lightning.pytorch.utilities.memory.is_out_of_cpu_memory"),
|
|
("py:func", "lightning.pytorch.utilities.rank_zero.rank_zero_only"),
|
|
("py:class", "lightning.pytorch.utilities.types.LRSchedulerConfig"),
|
|
("py:class", "lightning.pytorch.utilities.types.OptimizerLRSchedulerConfig"),
|
|
("py:class", "lightning_habana.pytorch.plugins.precision.HPUPrecisionPlugin"),
|
|
("py:class", "lightning_habana.pytorch.strategies.HPUParallelStrategy"),
|
|
("py:class", "lightning_habana.pytorch.strategies.SingleHPUStrategy"),
|
|
("py:obj", "logger.experiment"),
|
|
("py:class", "mlflow.tracking.MlflowClient"),
|
|
("py:attr", "model"),
|
|
("py:meth", "move_data_to_device"),
|
|
("py:class", "neptune.Run"),
|
|
("py:class", "neptune.handler.Handler"),
|
|
("py:meth", "on_after_batch_transfer"),
|
|
("py:meth", "on_before_batch_transfer"),
|
|
("py:meth", "on_save_checkpoint"),
|
|
("py:meth", "optimizer_step"),
|
|
("py:class", "out_dict"),
|
|
("py:meth", "prepare_data"),
|
|
("py:class", "lightning.pytorch.callbacks.device_stats_monitor.DeviceStatsMonitor"),
|
|
("py:meth", "setup"),
|
|
("py:meth", "test_step"),
|
|
("py:meth", "toggle_optimizer"),
|
|
("py:class", "torch.ScriptModule"),
|
|
("py:class", "torch.distributed.fsdp.fully_sharded_data_parallel.CPUOffload"),
|
|
("py:class", "torch.distributed.fsdp.fully_sharded_data_parallel.MixedPrecision"),
|
|
("py:class", "torch.distributed.fsdp.fully_sharded_data_parallel.ShardingStrategy"),
|
|
("py:class", "torch.distributed.fsdp.sharded_grad_scaler.ShardedGradScaler"),
|
|
("py:class", "torch.distributed.fsdp.wrap.ModuleWrapPolicy"),
|
|
("py:func", "torch.inference_mode"),
|
|
("py:meth", "torch.mean"),
|
|
("py:func", "torch.nn.Module.eval"),
|
|
("py:func", "torch.no_grad"),
|
|
("py:class", "torch.optim.lr_scheduler.LRScheduler"),
|
|
("py:meth", "torch.set_default_tensor_type"),
|
|
("py:class", "torch.utils.data.DistributedSampler"),
|
|
("py:class", "torch_xla.distributed.parallel_loader.MpDeviceLoader"),
|
|
("py:func", "torch_xla.distributed.xla_multiprocessing.spawn"),
|
|
("py:class", "torch._dynamo.OptimizedModule"),
|
|
("py:mod", "tqdm"),
|
|
("py:meth", "training_step"),
|
|
("py:meth", "transfer_batch_to_device"),
|
|
("py:class", "types.FrameType"),
|
|
("py:class", "typing.TypeGuard"),
|
|
("py:meth", "untoggle_optimizer"),
|
|
("py:meth", "validation_step"),
|
|
("py:class", "wandb.Artifact"),
|
|
("py:func", "wandb.init"),
|
|
("py:class", "wandb.sdk.lib.RunDisabled"),
|
|
("py:class", "wandb.wandb_run.Run"),
|
|
]
|
|
|
|
# -- Options for todo extension ----------------------------------------------
|
|
|
|
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
|
todo_include_todos = True
|
|
|
|
|
|
def setup(app):
|
|
# this is for hiding doctest decoration,
|
|
# see: http://z4r.github.io/python/2011/12/02/hides-the-prompts-and-output/
|
|
app.add_js_file("copybutton.js")
|
|
app.add_css_file("main.css")
|
|
|
|
|
|
# copy all notebooks to local folder
|
|
# path_nbs = os.path.join(PATH_HERE, 'notebooks')
|
|
# if not os.path.isdir(path_nbs):
|
|
# os.mkdir(path_nbs)
|
|
# for path_ipynb in glob.glob(os.path.join(PATH_ROOT, 'notebooks', '*.ipynb')):
|
|
# path_ipynb2 = os.path.join(path_nbs, os.path.basename(path_ipynb))
|
|
# shutil.copy(path_ipynb, path_ipynb2)
|
|
|
|
|
|
# Ignoring Third-party packages
|
|
# https://stackoverflow.com/questions/15889621/sphinx-how-to-exclude-imports-in-automodule
|
|
def package_list_from_file(file):
|
|
"""List up package name (not containing version and extras) from a package list file."""
|
|
mocked_packages = []
|
|
with open(file) as fp:
|
|
for ln in fp.readlines():
|
|
# Example: `tqdm>=4.41.0` => `tqdm`
|
|
# `[` is for package with extras
|
|
found = [ln.index(ch) for ch in list(",=<>#[") if ch in ln]
|
|
pkg = ln[: min(found)] if found else ln
|
|
if pkg.rstrip():
|
|
mocked_packages.append(pkg.rstrip())
|
|
return mocked_packages
|
|
|
|
|
|
# define mapping from PyPI names to python imports
|
|
PACKAGE_MAPPING = {
|
|
"Pillow": "PIL",
|
|
"opencv-python": "cv2",
|
|
"PyYAML": "yaml",
|
|
"hydra-core": "hydra",
|
|
}
|
|
MOCK_PACKAGES = []
|
|
if _SPHINX_MOCK_REQUIREMENTS:
|
|
_path_require = lambda fname: os.path.join(_PATH_ROOT, "requirements", "pytorch", fname)
|
|
# mock also base packages when we are on RTD since we don't install them there
|
|
MOCK_PACKAGES += package_list_from_file(_path_require("base.txt"))
|
|
MOCK_PACKAGES += package_list_from_file(_path_require("extra.txt"))
|
|
MOCK_PACKAGES += package_list_from_file(_path_require("strategies.txt"))
|
|
MOCK_PACKAGES += package_list_from_file(_path_require("loggers.info"))
|
|
MOCK_PACKAGES += ["comet_ml", "torch_xla", "transformer_engine", "bitsandbytes"]
|
|
MOCK_PACKAGES.remove("jsonargparse")
|
|
MOCK_PACKAGES = [PACKAGE_MAPPING.get(pkg, pkg) for pkg in MOCK_PACKAGES]
|
|
|
|
autodoc_mock_imports = MOCK_PACKAGES
|
|
|
|
autosummary_generate = True
|
|
|
|
autodoc_member_order = "groupwise"
|
|
|
|
autoclass_content = "both"
|
|
|
|
autodoc_default_options = {
|
|
"members": True,
|
|
"methods": True,
|
|
"special-members": "__call__",
|
|
"exclude-members": "_abc_impl",
|
|
"show-inheritance": True,
|
|
}
|
|
|
|
# Sphinx will add “permalinks” for each heading and description environment as paragraph signs that
|
|
# become visible when the mouse hovers over them.
|
|
# This value determines the text for the permalink; it defaults to "¶". Set it to None or the empty
|
|
# string to disable permalinks.
|
|
# https://www.sphinx-doc.org/en/master/usage/configuration.html#confval-html_add_permalinks
|
|
html_permalinks = True
|
|
html_permalinks_icon = "¶"
|
|
|
|
# True to prefix each section label with the name of the document it is in, followed by a colon.
|
|
# For example, index:Introduction for a section called Introduction that appears in document index.rst.
|
|
# Useful for avoiding ambiguity when the same section heading appears in different documents.
|
|
# http://www.sphinx-doc.org/en/master/usage/extensions/autosectionlabel.html
|
|
autosectionlabel_prefix_document = True
|
|
|
|
# only run doctests marked with a ".. doctest::" directive
|
|
doctest_test_doctest_blocks = ""
|
|
doctest_global_setup = """
|
|
import importlib
|
|
import os
|
|
import sys
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import lightning.pytorch as pl
|
|
from torch import nn
|
|
from torch.utils.data import IterableDataset, DataLoader, Dataset
|
|
from lightning.pytorch import LightningDataModule, LightningModule, Trainer, seed_everything
|
|
from lightning.pytorch.callbacks import Callback
|
|
from lightning.pytorch.cli import _JSONARGPARSE_SIGNATURES_AVAILABLE as _JSONARGPARSE_AVAILABLE
|
|
from lightning.pytorch.utilities.imports import _TORCHVISION_AVAILABLE
|
|
from lightning.fabric.loggers.tensorboard import _TENSORBOARD_AVAILABLE, _TENSORBOARDX_AVAILABLE
|
|
from lightning.pytorch.loggers.neptune import _NEPTUNE_AVAILABLE
|
|
from lightning.pytorch.loggers.comet import _COMET_AVAILABLE
|
|
from lightning.pytorch.loggers.mlflow import _MLFLOW_AVAILABLE
|
|
from lightning.pytorch.loggers.wandb import _WANDB_AVAILABLE
|
|
"""
|
|
coverage_skip_undoc_in_source = True
|
|
|
|
# skip false positive linkcheck errors from anchors
|
|
linkcheck_anchors = False
|
|
|
|
# A timeout value, in seconds, for the linkcheck builder.
|
|
linkcheck_timeout = 60
|
|
|
|
# ignore all links in any CHANGELOG file
|
|
linkcheck_exclude_documents = [r"^(.*\/)*CHANGELOG.*$"]
|
|
|
|
# ignore the following relative links (false positive errors during linkcheck)
|
|
linkcheck_ignore = [
|
|
r"installation.html$",
|
|
r"starter/installation.html$",
|
|
r"^../common/trainer.html#trainer-flags$",
|
|
"https://deepgenerativemodels.github.io/assets/slides/cs236_lecture11.pdf",
|
|
"https://www.intel.com/content/www/us/en/products/docs/processors/what-is-a-gpu.html",
|
|
"https://www.microsoft.com/en-us/research/blog/zero-infinity-and-deepspeed-unlocking-unprecedented-model-scale-for-deep-learning-training/", # noqa: E501
|
|
"https://stackoverflow.com/questions/66640705/how-can-i-install-grpcio-on-an-apple-m1-silicon-laptop",
|
|
]
|