lightning/docs/source-pytorch/clouds/cluster_expert.rst

52 lines
1.5 KiB
ReStructuredText

:orphan:
##################################
Run on an on-prem cluster (expert)
##################################
.. _custom-cluster:
----
**************************
Integrate your own cluster
**************************
Lightning provides an interface for providing your own definition of a cluster environment. It mainly consists of
parsing the right environment variables to access information such as world size, global and local rank (process id),
and node rank (node id). Here is an example of a custom
:class:`~lightning.pytorch.plugins.environments.cluster_environment.ClusterEnvironment`:
.. code-block:: python
import os
from lightning.pytorch.plugins.environments import ClusterEnvironment
class MyClusterEnvironment(ClusterEnvironment):
@property
def creates_processes_externally(self) -> bool:
"""Return True if the cluster is managed (you don't launch processes yourself)"""
return True
def world_size(self) -> int:
return int(os.environ["WORLD_SIZE"])
def global_rank(self) -> int:
return int(os.environ["RANK"])
def local_rank(self) -> int:
return int(os.environ["LOCAL_RANK"])
def node_rank(self) -> int:
return int(os.environ["NODE_RANK"])
def main_address(self) -> str:
return os.environ["MASTER_ADDRESS"]
def main_port(self) -> int:
return int(os.environ["MASTER_PORT"])
trainer = Trainer(plugins=[MyClusterEnvironment()])