758 lines
20 KiB
Python
758 lines
20 KiB
Python
import os
|
|
import shutil
|
|
import warnings
|
|
|
|
import pytest
|
|
import numpy as np
|
|
import torch
|
|
from pytorch_lightning import Trainer
|
|
from examples import LightningTemplateModel
|
|
from pytorch_lightning.testing.lm_test_module import LightningTestModel
|
|
from argparse import Namespace
|
|
from test_tube import Experiment, SlurmCluster
|
|
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
|
|
from pytorch_lightning.utilities.debugging import MisconfigurationException
|
|
from pytorch_lightning.root_module import memory
|
|
from pytorch_lightning.models.trainer import reduce_distributed_output
|
|
from pytorch_lightning.root_module import model_saving
|
|
|
|
SEED = 2334
|
|
torch.manual_seed(SEED)
|
|
np.random.seed(SEED)
|
|
|
|
|
|
# ------------------------------------------------------------------------
|
|
# TESTS
|
|
# ------------------------------------------------------------------------
|
|
def test_amp_gpu_ddp():
|
|
"""
|
|
Make sure DDP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
|
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
trainer_options = dict(
|
|
progress_bar=True,
|
|
max_nb_epochs=1,
|
|
gpus=[0, 1],
|
|
distributed_backend='ddp',
|
|
use_amp=True
|
|
)
|
|
|
|
run_gpu_model_test(trainer_options, model, hparams)
|
|
|
|
|
|
def test_cpu_restore_training():
|
|
"""
|
|
Verify continue training session on CPU
|
|
:return:
|
|
"""
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
test_exp_version = 10
|
|
exp = get_exp(False, version=test_exp_version)
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
experiment=exp,
|
|
checkpoint_callback=ModelCheckpoint(save_dir)
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
real_global_step = trainer.global_step
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# predict with trained model before saving
|
|
# make a prediction
|
|
for batch in model.test_dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# wipe-out trainer and model
|
|
# retrain with not much data... this simulates picking training back up after slurm
|
|
# we want to see if the weights come back correctly
|
|
new_exp = get_exp(False, version=test_exp_version)
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
experiment=new_exp,
|
|
checkpoint_callback=ModelCheckpoint(save_dir),
|
|
)
|
|
trainer = Trainer(**trainer_options)
|
|
model = LightningTestModel(hparams)
|
|
|
|
# set the epoch start hook so we can predict before the model does the full training
|
|
def assert_pred_same():
|
|
assert trainer.global_step == real_global_step and trainer.global_step > 0
|
|
|
|
# predict with loaded model to make sure answers are the same
|
|
trainer.model.eval()
|
|
new_pred = trainer.model(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
model.on_epoch_start = assert_pred_same
|
|
|
|
# by calling fit again, we trigger training, loading weights from the cluster
|
|
# and our hook to predict using current model before any more weight updates
|
|
trainer.fit(model)
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def test_cpu_slurm_save_load():
|
|
"""
|
|
Verify model save/load/checkpoint on CPU
|
|
:return:
|
|
"""
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
exp = get_exp(False)
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
cluster_a = SlurmCluster()
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
cluster=cluster_a,
|
|
experiment=exp,
|
|
checkpoint_callback=ModelCheckpoint(save_dir)
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
real_global_step = trainer.global_step
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# predict with trained model before saving
|
|
# make a prediction
|
|
for batch in model.test_dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# test registering a save function
|
|
trainer.enable_auto_hpc_walltime_manager()
|
|
|
|
# test HPC saving
|
|
# simulate snapshot on slurm
|
|
saved_filepath = trainer.hpc_save(save_dir, exp)
|
|
assert os.path.exists(saved_filepath)
|
|
|
|
# wipe-out trainer and model
|
|
# retrain with not much data... this simulates picking training back up after slurm
|
|
# we want to see if the weights come back correctly
|
|
continue_tng_hparams = get_hparams(continue_training=True, hpc_exp_number=cluster_a.hpc_exp_number)
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
cluster=SlurmCluster(continue_tng_hparams),
|
|
experiment=exp,
|
|
checkpoint_callback=ModelCheckpoint(save_dir),
|
|
)
|
|
trainer = Trainer(**trainer_options)
|
|
model = LightningTestModel(hparams)
|
|
|
|
# set the epoch start hook so we can predict before the model does the full training
|
|
def assert_pred_same():
|
|
assert trainer.global_step == real_global_step and trainer.global_step > 0
|
|
|
|
# predict with loaded model to make sure answers are the same
|
|
trainer.model.eval()
|
|
new_pred = trainer.model(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
model.on_epoch_start = assert_pred_same
|
|
|
|
# by calling fit again, we trigger training, loading weights from the cluster
|
|
# and our hook to predict using current model before any more weight updates
|
|
trainer.fit(model)
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def test_loading_meta_tags():
|
|
hparams = get_hparams()
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# save tags
|
|
exp = get_exp(False)
|
|
exp.tag({'some_str':'a_str', 'an_int': 1, 'a_float': 2.0})
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# load tags
|
|
tags_path = exp.get_data_path(exp.name, exp.version) + '/meta_tags.csv'
|
|
tags = model_saving.load_hparams_from_tags_csv(tags_path)
|
|
|
|
assert tags.batch_size == 32 and tags.hidden_dim == 1000
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def test_dp_output_reduce():
|
|
|
|
# test identity when we have a single gpu
|
|
out = torch.rand(3, 1)
|
|
assert reduce_distributed_output(out, nb_gpus=1) is out
|
|
|
|
# average when we have multiples
|
|
assert reduce_distributed_output(out, nb_gpus=2) == out.mean()
|
|
|
|
# when we have a dict of vals
|
|
out = {
|
|
'a': out,
|
|
'b': {
|
|
'c': out
|
|
}
|
|
}
|
|
reduced = reduce_distributed_output(out, nb_gpus=3)
|
|
assert reduced['a'] == out['a']
|
|
assert reduced['b']['c'] == out['b']['c']
|
|
|
|
|
|
def test_model_saving_loading():
|
|
"""
|
|
Tests use case where trainer saves the model, and user loads it from tags independently
|
|
:return:
|
|
"""
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
exp = get_exp(False)
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
cluster=SlurmCluster(),
|
|
experiment=exp,
|
|
checkpoint_callback=ModelCheckpoint(save_dir)
|
|
)
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
# traning complete
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# make a prediction
|
|
for batch in model.test_dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
# generate preds before saving model
|
|
model.eval()
|
|
pred_before_saving = model(x)
|
|
|
|
# save model
|
|
new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
|
|
trainer.save_checkpoint(new_weights_path)
|
|
|
|
# load new model
|
|
tags_path = exp.get_data_path(exp.name, exp.version)
|
|
tags_path = os.path.join(tags_path, 'meta_tags.csv')
|
|
model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path, tags_csv=tags_path, on_gpu=False)
|
|
model_2.eval()
|
|
|
|
# make prediction
|
|
# assert that both predictions are the same
|
|
new_pred = model_2(x)
|
|
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def test_model_freeze_unfreeze():
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_amp_gpu_ddp_slurm_managed():
|
|
"""
|
|
Make sure DDP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
# simulate setting slurm flags
|
|
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
|
os.environ['SLURM_LOCALID'] = str(0)
|
|
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams)
|
|
|
|
trainer_options = dict(
|
|
progress_bar=True,
|
|
max_nb_epochs=1,
|
|
gpus=[0],
|
|
distributed_backend='ddp',
|
|
use_amp=True
|
|
)
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
exp = get_exp(False)
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# exp file to get weights
|
|
checkpoint = ModelCheckpoint(save_dir)
|
|
|
|
# add these to the trainer options
|
|
trainer_options['checkpoint_callback'] = checkpoint
|
|
trainer_options['experiment'] = exp
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
trainer.is_slurm_managing_tasks = True
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# test root model address
|
|
assert trainer.resolve_root_node_address('abc') == 'abc'
|
|
assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
|
|
assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
|
|
assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
|
|
|
|
# test model loading with a map_location
|
|
map_location = 'cuda:1'
|
|
pretrained_model = load_model(exp, save_dir, True, map_location)
|
|
|
|
# test model preds
|
|
run_prediction(model.test_dataloader, pretrained_model)
|
|
|
|
if trainer.use_ddp:
|
|
# on hpc this would work fine... but need to hack it for the purpose of the test
|
|
trainer.model = pretrained_model
|
|
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
|
|
|
|
# test HPC loading / saving
|
|
trainer.hpc_save(save_dir, exp)
|
|
trainer.hpc_load(save_dir, on_gpu=True)
|
|
|
|
# test freeze on gpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def test_early_stopping_cpu_model():
|
|
"""
|
|
Test each of the trainer options
|
|
:return:
|
|
"""
|
|
|
|
stopping = EarlyStopping()
|
|
trainer_options = dict(
|
|
early_stop_callback=stopping,
|
|
gradient_clip=1.0,
|
|
overfit_pct=0.20,
|
|
track_grad_norm=2,
|
|
print_nan_grads=True,
|
|
progress_bar=False,
|
|
experiment=get_exp(),
|
|
train_percent_check=0.1,
|
|
val_percent_check=0.1
|
|
)
|
|
|
|
model, hparams = get_model()
|
|
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
|
|
|
# test freeze on cpu
|
|
model.freeze()
|
|
model.unfreeze()
|
|
|
|
|
|
def test_cpu_model_with_amp():
|
|
"""
|
|
Make sure model trains on CPU
|
|
:return:
|
|
"""
|
|
|
|
trainer_options = dict(
|
|
progress_bar=False,
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4,
|
|
use_amp=True
|
|
)
|
|
|
|
model, hparams = get_model()
|
|
|
|
with pytest.raises((MisconfigurationException, ModuleNotFoundError)):
|
|
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
|
|
|
|
|
def test_cpu_model():
|
|
"""
|
|
Make sure model trains on CPU
|
|
:return:
|
|
"""
|
|
|
|
trainer_options = dict(
|
|
progress_bar=False,
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4
|
|
)
|
|
|
|
model, hparams = get_model()
|
|
|
|
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
|
|
|
|
|
def test_all_features_cpu_model():
|
|
"""
|
|
Test each of the trainer options
|
|
:return:
|
|
"""
|
|
|
|
trainer_options = dict(
|
|
gradient_clip=1.0,
|
|
overfit_pct=0.20,
|
|
track_grad_norm=2,
|
|
print_nan_grads=True,
|
|
progress_bar=False,
|
|
experiment=get_exp(),
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.4
|
|
)
|
|
|
|
model, hparams = get_model()
|
|
run_gpu_model_test(trainer_options, model, hparams, on_gpu=False)
|
|
|
|
|
|
def test_single_gpu_model():
|
|
"""
|
|
Make sure single GPU works (DP mode)
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_single_gpu_model cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
model, hparams = get_model()
|
|
|
|
trainer_options = dict(
|
|
progress_bar=False,
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.1,
|
|
val_percent_check=0.1,
|
|
gpus=[0]
|
|
)
|
|
|
|
run_gpu_model_test(trainer_options, model, hparams)
|
|
|
|
|
|
def test_multi_gpu_model_dp():
|
|
"""
|
|
Make sure DP works
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_multi_gpu_model_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
model, hparams = get_model()
|
|
trainer_options = dict(
|
|
progress_bar=False,
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.1,
|
|
val_percent_check=0.1,
|
|
gpus='-1'
|
|
)
|
|
|
|
run_gpu_model_test(trainer_options, model, hparams)
|
|
|
|
# test memory helper functions
|
|
memory.get_gpu_memory_map()
|
|
|
|
|
|
def test_amp_gpu_dp():
|
|
"""
|
|
Make sure DP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_dp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
model, hparams = get_model()
|
|
trainer_options = dict(
|
|
max_nb_epochs=1,
|
|
gpus='0, 1', # test init with gpu string
|
|
distributed_backend='dp',
|
|
use_amp=True
|
|
)
|
|
with pytest.raises(MisconfigurationException):
|
|
run_gpu_model_test(trainer_options, model, hparams)
|
|
|
|
|
|
def test_multi_gpu_model_ddp():
|
|
"""
|
|
Make sure DDP works
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_multi_gpu_model_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
|
model, hparams = get_model()
|
|
trainer_options = dict(
|
|
progress_bar=False,
|
|
max_nb_epochs=1,
|
|
train_percent_check=0.4,
|
|
val_percent_check=0.2,
|
|
gpus=[0, 1],
|
|
distributed_backend='ddp'
|
|
)
|
|
|
|
run_gpu_model_test(trainer_options, model, hparams)
|
|
|
|
|
|
|
|
def test_ddp_sampler_error():
|
|
"""
|
|
Make sure DDP + AMP work
|
|
:return:
|
|
"""
|
|
if not torch.cuda.is_available():
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a GPU node to run this test')
|
|
return
|
|
if not torch.cuda.device_count() > 1:
|
|
warnings.warn('test_amp_gpu_ddp cannot run. Rerun on a node with 2+ GPUs to run this test')
|
|
return
|
|
|
|
os.environ['MASTER_PORT'] = str(np.random.randint(12000, 19000, 1)[0])
|
|
|
|
hparams = get_hparams()
|
|
model = LightningTestModel(hparams, force_remove_distributed_sampler=True)
|
|
|
|
exp = get_exp(True)
|
|
exp.save()
|
|
|
|
trainer = Trainer(
|
|
experiment=exp,
|
|
progress_bar=False,
|
|
max_nb_epochs=1,
|
|
gpus=[0, 1],
|
|
distributed_backend='ddp',
|
|
use_amp=True
|
|
)
|
|
|
|
with pytest.raises(MisconfigurationException):
|
|
trainer.get_dataloaders(model)
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
# ------------------------------------------------------------------------
|
|
# UTILS
|
|
# ------------------------------------------------------------------------
|
|
def run_gpu_model_test(trainer_options, model, hparams, on_gpu=True):
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
exp = get_exp(False)
|
|
exp.argparse(hparams)
|
|
exp.save()
|
|
|
|
# exp file to get weights
|
|
checkpoint = ModelCheckpoint(save_dir)
|
|
|
|
# add these to the trainer options
|
|
trainer_options['checkpoint_callback'] = checkpoint
|
|
trainer_options['experiment'] = exp
|
|
|
|
# fit model
|
|
trainer = Trainer(**trainer_options)
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# test model loading
|
|
pretrained_model = load_model(exp, save_dir, on_gpu)
|
|
|
|
# test model preds
|
|
run_prediction(model.test_dataloader, pretrained_model)
|
|
|
|
if trainer.use_ddp:
|
|
# on hpc this would work fine... but need to hack it for the purpose of the test
|
|
trainer.model = pretrained_model
|
|
trainer.optimizers, trainer.lr_schedulers = pretrained_model.configure_optimizers()
|
|
|
|
# test HPC loading / saving
|
|
trainer.hpc_save(save_dir, exp)
|
|
trainer.hpc_load(save_dir, on_gpu=on_gpu)
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
def get_hparams(continue_training=False, hpc_exp_number=0):
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
|
|
args = {
|
|
'drop_prob': 0.2,
|
|
'batch_size': 32,
|
|
'in_features': 28*28,
|
|
'learning_rate': 0.001*8,
|
|
'optimizer_name': 'adam',
|
|
'data_root': os.path.join(root_dir, 'mnist'),
|
|
'out_features': 10,
|
|
'hidden_dim': 1000}
|
|
|
|
if continue_training:
|
|
args['test_tube_do_checkpoint_load'] = True
|
|
args['hpc_exp_number'] = hpc_exp_number
|
|
|
|
hparams = Namespace(**args)
|
|
return hparams
|
|
|
|
|
|
def get_model():
|
|
# set up model with these hyperparams
|
|
hparams = get_hparams()
|
|
model = LightningTemplateModel(hparams)
|
|
|
|
return model, hparams
|
|
|
|
|
|
def get_exp(debug=True, version=None):
|
|
# set up exp object without actually saving logs
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir', version=version)
|
|
return exp
|
|
|
|
|
|
def init_save_dir():
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
save_dir = os.path.join(root_dir, 'save_dir')
|
|
|
|
if os.path.exists(save_dir):
|
|
shutil.rmtree(save_dir)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
return save_dir
|
|
|
|
|
|
def clear_save_dir():
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
save_dir = os.path.join(root_dir, 'save_dir')
|
|
if os.path.exists(save_dir):
|
|
shutil.rmtree(save_dir)
|
|
|
|
|
|
def load_model(exp, save_dir, on_gpu, map_location=None):
|
|
|
|
# load trained model
|
|
tags_path = exp.get_data_path(exp.name, exp.version)
|
|
tags_path = os.path.join(tags_path, 'meta_tags.csv')
|
|
|
|
checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x]
|
|
weights_dir = os.path.join(save_dir, checkpoints[0])
|
|
|
|
trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir,
|
|
tags_csv=tags_path,
|
|
on_gpu=on_gpu,
|
|
map_location=map_location)
|
|
|
|
assert trained_model is not None, 'loading model failed'
|
|
|
|
return trained_model
|
|
|
|
|
|
def run_prediction(dataloader, trained_model):
|
|
# run prediction on 1 batch
|
|
for batch in dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
y_hat = trained_model(x)
|
|
|
|
# acc
|
|
labels_hat = torch.argmax(y_hat, dim=1)
|
|
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
|
val_acc = torch.tensor(val_acc)
|
|
val_acc = val_acc.item()
|
|
|
|
print(val_acc)
|
|
|
|
assert val_acc > 0.50, f'this model is expected to get > 0.50 in test set (it got {val_acc})'
|
|
|
|
|
|
def assert_ok_acc(trainer):
|
|
# this model should get 0.80+ acc
|
|
acc = trainer.tng_tqdm_dic['val_acc']
|
|
assert acc > 0.50, f'model failed to get expected 0.50 validation accuracy. Got: {acc}'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
pytest.main([__file__])
|