189 lines
6.6 KiB
Python
189 lines
6.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import argparse
|
|
from typing import Any
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import torch.optim as optim
|
|
import torchvision.transforms as T
|
|
from torch.optim.lr_scheduler import StepLR
|
|
from torchmetrics import Accuracy
|
|
|
|
from pl_examples.basic_examples.mnist_datamodule import MNIST
|
|
from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net
|
|
from pytorch_lightning import seed_everything
|
|
from pytorch_lightning.lite import LightningLite
|
|
from pytorch_lightning.loops import Loop
|
|
|
|
|
|
class TrainLoop(Loop):
|
|
def __init__(self, lite, args, model, optimizer, scheduler, dataloader):
|
|
super().__init__()
|
|
self.lite = lite
|
|
self.args = args
|
|
self.model = model
|
|
self.optimizer = optimizer
|
|
self.scheduler = scheduler
|
|
self.dataloader = dataloader
|
|
self.dataloader_iter = None
|
|
|
|
@property
|
|
def done(self) -> bool:
|
|
return False
|
|
|
|
def reset(self):
|
|
self.dataloader_iter = enumerate(self.dataloader)
|
|
|
|
def advance(self, epoch) -> None:
|
|
batch_idx, (data, target) = next(self.dataloader_iter)
|
|
self.optimizer.zero_grad()
|
|
output = self.model(data)
|
|
loss = F.nll_loss(output, target)
|
|
self.lite.backward(loss)
|
|
self.optimizer.step()
|
|
|
|
if (batch_idx == 0) or ((batch_idx + 1) % self.args.log_interval == 0):
|
|
print(
|
|
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
|
|
epoch,
|
|
batch_idx * len(self.dataloader),
|
|
len(self.dataloader.dataset),
|
|
100.0 * batch_idx / len(self.dataloader),
|
|
loss.item(),
|
|
)
|
|
)
|
|
|
|
if self.args.dry_run:
|
|
raise StopIteration
|
|
|
|
def on_run_end(self):
|
|
self.scheduler.step()
|
|
self.dataloader_iter = None
|
|
|
|
|
|
class TestLoop(Loop):
|
|
def __init__(self, lite, args, model, dataloader):
|
|
super().__init__()
|
|
self.lite = lite
|
|
self.args = args
|
|
self.model = model
|
|
self.dataloader = dataloader
|
|
self.dataloader_iter = None
|
|
self.accuracy = Accuracy().to(lite.device)
|
|
self.test_loss = 0
|
|
|
|
@property
|
|
def done(self) -> bool:
|
|
return False
|
|
|
|
def reset(self):
|
|
self.dataloader_iter = enumerate(self.dataloader)
|
|
self.test_loss = 0
|
|
self.accuracy.reset()
|
|
|
|
def advance(self) -> None:
|
|
_, (data, target) = next(self.dataloader_iter)
|
|
output = self.model(data)
|
|
self.test_loss += F.nll_loss(output, target)
|
|
self.accuracy(output, target)
|
|
|
|
if self.args.dry_run:
|
|
raise StopIteration
|
|
|
|
def on_run_end(self):
|
|
test_loss = self.lite.all_gather(self.test_loss).sum() / len(self.dataloader.dataset)
|
|
|
|
if self.lite.is_global_zero:
|
|
print(f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({self.accuracy.compute():.0f}%)\n")
|
|
|
|
|
|
class MainLoop(Loop):
|
|
def __init__(self, lite, args, model, optimizer, scheduler, train_loader, test_loader):
|
|
super().__init__()
|
|
self.lite = lite
|
|
self.args = args
|
|
self.epoch = 0
|
|
self.train_loop = TrainLoop(self.lite, self.args, model, optimizer, scheduler, train_loader)
|
|
self.test_loop = TestLoop(self.lite, self.args, model, test_loader)
|
|
|
|
@property
|
|
def done(self) -> bool:
|
|
return self.epoch >= self.args.epochs
|
|
|
|
def reset(self):
|
|
pass
|
|
|
|
def advance(self, *args: Any, **kwargs: Any) -> None:
|
|
self.train_loop.run(self.epoch)
|
|
self.test_loop.run()
|
|
|
|
if self.args.dry_run:
|
|
raise StopIteration
|
|
|
|
self.epoch += 1
|
|
|
|
|
|
class Lite(LightningLite):
|
|
def run(self, hparams):
|
|
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
|
|
if self.is_global_zero:
|
|
MNIST("./data", download=True)
|
|
self.barrier()
|
|
train_dataset = MNIST("./data", train=True, transform=transform)
|
|
test_dataset = MNIST("./data", train=False, transform=transform)
|
|
train_loader = torch.utils.data.DataLoader(train_dataset, hparams.batch_size)
|
|
test_loader = torch.utils.data.DataLoader(test_dataset, hparams.test_batch_size)
|
|
|
|
train_loader, test_loader = self.setup_dataloaders(train_loader, test_loader)
|
|
|
|
model = Net()
|
|
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
|
|
|
|
model, optimizer = self.setup(model, optimizer)
|
|
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
|
|
|
|
MainLoop(self, hparams, model, optimizer, scheduler, train_loader, test_loader).run()
|
|
|
|
if hparams.save_model and self.is_global_zero:
|
|
self.save(model.state_dict(), "mnist_cnn.pt")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="LightningLite MNIST Example with Lightning Loops.")
|
|
parser.add_argument(
|
|
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
|
|
)
|
|
parser.add_argument(
|
|
"--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)"
|
|
)
|
|
parser.add_argument("--epochs", type=int, default=2, metavar="N", help="number of epochs to train (default: 14)")
|
|
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
|
|
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
|
|
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
|
|
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
|
|
parser.add_argument(
|
|
"--log-interval",
|
|
type=int,
|
|
default=10,
|
|
metavar="N",
|
|
help="how many batches to wait before logging training status",
|
|
)
|
|
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
|
|
hparams = parser.parse_args()
|
|
|
|
seed_everything(hparams.seed)
|
|
|
|
Lite(accelerator="cpu", devices=1).run(hparams)
|