lightning/pl_examples/loop_examples/mnist_lite.py

189 lines
6.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from typing import Any
import torch
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as T
from torch.optim.lr_scheduler import StepLR
from torchmetrics import Accuracy
from pl_examples.basic_examples.mnist_datamodule import MNIST
from pl_examples.basic_examples.mnist_examples.image_classifier_1_pytorch import Net
from pytorch_lightning import seed_everything
from pytorch_lightning.lite import LightningLite
from pytorch_lightning.loops import Loop
class TrainLoop(Loop):
def __init__(self, lite, args, model, optimizer, scheduler, dataloader):
super().__init__()
self.lite = lite
self.args = args
self.model = model
self.optimizer = optimizer
self.scheduler = scheduler
self.dataloader = dataloader
self.dataloader_iter = None
@property
def done(self) -> bool:
return False
def reset(self):
self.dataloader_iter = enumerate(self.dataloader)
def advance(self, epoch) -> None:
batch_idx, (data, target) = next(self.dataloader_iter)
self.optimizer.zero_grad()
output = self.model(data)
loss = F.nll_loss(output, target)
self.lite.backward(loss)
self.optimizer.step()
if (batch_idx == 0) or ((batch_idx + 1) % self.args.log_interval == 0):
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(self.dataloader),
len(self.dataloader.dataset),
100.0 * batch_idx / len(self.dataloader),
loss.item(),
)
)
if self.args.dry_run:
raise StopIteration
def on_run_end(self):
self.scheduler.step()
self.dataloader_iter = None
class TestLoop(Loop):
def __init__(self, lite, args, model, dataloader):
super().__init__()
self.lite = lite
self.args = args
self.model = model
self.dataloader = dataloader
self.dataloader_iter = None
self.accuracy = Accuracy().to(lite.device)
self.test_loss = 0
@property
def done(self) -> bool:
return False
def reset(self):
self.dataloader_iter = enumerate(self.dataloader)
self.test_loss = 0
self.accuracy.reset()
def advance(self) -> None:
_, (data, target) = next(self.dataloader_iter)
output = self.model(data)
self.test_loss += F.nll_loss(output, target)
self.accuracy(output, target)
if self.args.dry_run:
raise StopIteration
def on_run_end(self):
test_loss = self.lite.all_gather(self.test_loss).sum() / len(self.dataloader.dataset)
if self.lite.is_global_zero:
print(f"\nTest set: Average loss: {test_loss:.4f}, Accuracy: ({self.accuracy.compute():.0f}%)\n")
class MainLoop(Loop):
def __init__(self, lite, args, model, optimizer, scheduler, train_loader, test_loader):
super().__init__()
self.lite = lite
self.args = args
self.epoch = 0
self.train_loop = TrainLoop(self.lite, self.args, model, optimizer, scheduler, train_loader)
self.test_loop = TestLoop(self.lite, self.args, model, test_loader)
@property
def done(self) -> bool:
return self.epoch >= self.args.epochs
def reset(self):
pass
def advance(self, *args: Any, **kwargs: Any) -> None:
self.train_loop.run(self.epoch)
self.test_loop.run()
if self.args.dry_run:
raise StopIteration
self.epoch += 1
class Lite(LightningLite):
def run(self, hparams):
transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
if self.is_global_zero:
MNIST("./data", download=True)
self.barrier()
train_dataset = MNIST("./data", train=True, transform=transform)
test_dataset = MNIST("./data", train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, hparams.batch_size)
test_loader = torch.utils.data.DataLoader(test_dataset, hparams.test_batch_size)
train_loader, test_loader = self.setup_dataloaders(train_loader, test_loader)
model = Net()
optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
model, optimizer = self.setup(model, optimizer)
scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
MainLoop(self, hparams, model, optimizer, scheduler, train_loader, test_loader).run()
if hparams.save_model and self.is_global_zero:
self.save(model.state_dict(), "mnist_cnn.pt")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="LightningLite MNIST Example with Lightning Loops.")
parser.add_argument(
"--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
)
parser.add_argument(
"--test-batch-size", type=int, default=1000, metavar="N", help="input batch size for testing (default: 1000)"
)
parser.add_argument("--epochs", type=int, default=2, metavar="N", help="number of epochs to train (default: 14)")
parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
parser.add_argument(
"--log-interval",
type=int,
default=10,
metavar="N",
help="how many batches to wait before logging training status",
)
parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
hparams = parser.parse_args()
seed_everything(hparams.seed)
Lite(accelerator="cpu", devices=1).run(hparams)