lightning/tests
Wansoo Kim 93de5c8a40
Allow Callback instance as an argument of `callbacks` in `Trainer` (#5446)
* fix

* Update CHANGELOG

* add test

* fix

* pep

* docs

Co-authored-by: Jirka Borovec <Borda@users.noreply.github.com>
Co-authored-by: Rohit Gupta <rohitgr1998@gmail.com>
2021-01-11 11:36:32 +00:00
..
backends Refactor: clean trainer device & distrib setters (#5297) 2021-01-04 17:10:13 +00:00
base test_cpu and test_gpu EvalModelTemplate deprecation (#4820) 2021-01-07 05:50:08 -05:00
callbacks Allow Callback instance as an argument of `callbacks` in `Trainer` (#5446) 2021-01-11 11:36:32 +00:00
checkpointing fix formatting - flake8 + isort 2021-01-06 21:31:48 +01:00
core Fix invalid value for weights_summary (#5296) 2021-01-06 12:59:32 +01:00
deprecated_api Reformat iou [func] and add IoU class (#4704) 2021-01-08 13:36:08 +00:00
loggers [tests/loggers] refactor with BoringModel (#5440) 2021-01-10 07:30:06 -05:00
metrics Reformat iou [func] and add IoU class (#4704) 2021-01-08 13:36:08 +00:00
models test_cpu and test_gpu EvalModelTemplate deprecation (#4820) 2021-01-07 05:50:08 -05:00
plugins [bug-fix] Trainer.test points to latest best_model_path (#5161) 2021-01-06 15:14:10 +01:00
trainer Feat: Add BackboneLambdaFinetunningCallback (#5377) 2021-01-08 16:33:05 -05:00
tuner refactor - check F841 (#5202) 2020-12-21 11:10:55 +05:30
utilities Bugfix/all gather (#5221) 2021-01-09 07:37:44 -05:00
README.md
__init__.py flake8 ++ 2021-01-05 09:58:37 +01:00
collect_env_details.py add copyright to tests (#5143) 2021-01-05 09:57:37 +01:00
conftest.py update isort config (#5335) 2021-01-06 12:49:23 +01:00
special_tests.sh Bugfix/all gather (#5221) 2021-01-09 07:37:44 -05:00
test_profiler.py update isort config (#5335) 2021-01-06 12:49:23 +01:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

Install Open MPI or another MPI implementation. Learn how to install Open MPI on this page.

git clone https://github.com/PyTorchLightning/pytorch-lightning
cd pytorch-lightning

# install AMP support
bash requirements/install_AMP.sh

# install dev deps
pip install -r requirements/devel.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.
  3. Horovod with NCCL support: HOROVOD_GPU_OPERATIONS=NCCL pip install horovod

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage (coverage is also installed as part of dev dependencies under requirements/devel.txt)
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v

# print coverage stats
coverage report -m

# exporting results
coverage xml

Building test image

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch_lightning:devel-torch1.4 -f dockers/cuda-extras/Dockerfile --build-arg TORCH_VERSION=1.4 .

To build other versions, select different Dockerfile.

docker image list
docker run --rm -it pytorch_lightning:devel-torch1.4 bash
docker image rm pytorch_lightning:devel-torch1.4