lightning/tests/tests_pytorch/plugins/test_cluster_integration.py

110 lines
4.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import pytest
import torch
from lightning_lite.plugins.environments import LightningEnvironment, SLURMEnvironment, TorchElasticEnvironment
from pytorch_lightning import Trainer
from pytorch_lightning.strategies import DDPShardedStrategy, DDPStrategy, DeepSpeedStrategy
from pytorch_lightning.utilities.rank_zero import rank_zero_only
from tests_pytorch.helpers.runif import RunIf
def environment_combinations():
expected = dict(global_rank=3, local_rank=1, node_rank=1, world_size=4)
# Lightning
variables = {"CUDA_VISIBLE_DEVICES": "0,1,2,4", "LOCAL_RANK": "1", "NODE_RANK": "1", "WORLD_SIZE": "8"}
environment = LightningEnvironment()
yield environment, variables, expected
# SLURM
variables = {
"CUDA_VISIBLE_DEVICES": "0,1,2,4",
"SLURM_JOB_NAME": "SOME_NAME",
"SLURM_LOCALID": "1",
"SLURM_NODEID": "1",
"SLURM_PROCID": "3",
"SLURM_NTASKS": "4",
"SLURM_NTASKS_PER_NODE": "2",
}
environment = SLURMEnvironment()
yield environment, variables, expected
# TorchElastic
variables = {
"CUDA_VISIBLE_DEVICES": "0,1,2,4",
"LOCAL_RANK": "1",
"GROUP_RANK": "1",
"RANK": "3",
"WORLD_SIZE": "4",
"LOCAL_WORLD_SIZE": "2",
"TORCHELASTIC_RUN_ID": "1",
}
environment = TorchElasticEnvironment()
yield environment, variables, expected
@pytest.mark.parametrize(
"strategy_cls",
[DDPStrategy, DDPShardedStrategy, pytest.param(DeepSpeedStrategy, marks=RunIf(deepspeed=True))],
)
@mock.patch("pytorch_lightning.accelerators.cuda.CUDAAccelerator.is_available", return_value=True)
def test_ranks_available_manual_strategy_selection(mock_gpu_acc_available, strategy_cls):
"""Test that the rank information is readily available after Trainer initialization."""
num_nodes = 2
for cluster, variables, expected in environment_combinations():
with mock.patch.dict(os.environ, variables):
strategy = strategy_cls(
parallel_devices=[torch.device("cuda", 1), torch.device("cuda", 2)], cluster_environment=cluster
)
trainer = Trainer(strategy=strategy, num_nodes=num_nodes)
assert rank_zero_only.rank == expected["global_rank"]
assert trainer.global_rank == expected["global_rank"]
assert trainer.local_rank == expected["local_rank"]
assert trainer.node_rank == expected["node_rank"]
assert trainer.world_size == expected["world_size"]
@pytest.mark.parametrize(
"trainer_kwargs",
[
dict(strategy="ddp", accelerator="gpu", devices=[1, 2]),
dict(strategy="ddp_sharded", accelerator="gpu", devices=[1, 2]),
dict(strategy="ddp_spawn", accelerator="cpu", devices=2),
dict(strategy="ddp_spawn", accelerator="gpu", devices=[1, 2]),
],
)
def test_ranks_available_automatic_strategy_selection(mps_count_4, cuda_count_4, trainer_kwargs):
"""Test that the rank information is readily available after Trainer initialization."""
num_nodes = 2
trainer_kwargs.update(num_nodes=num_nodes)
for cluster, variables, expected in environment_combinations():
if trainer_kwargs["strategy"] == "ddp_spawn":
if isinstance(cluster, (SLURMEnvironment, TorchElasticEnvironment)):
# slurm and torchelastic do not work with spawn strategies
continue
# when using spawn, we don't reach rank > 0 until we call Trainer.fit()
expected.update(global_rank=(expected["node_rank"] * 2), local_rank=0)
with mock.patch.dict(os.environ, variables):
trainer = Trainer(**trainer_kwargs)
assert type(trainer.strategy.cluster_environment) is type(cluster)
assert rank_zero_only.rank == expected["global_rank"]
assert trainer.global_rank == expected["global_rank"]
assert trainer.local_rank == expected["local_rank"]
assert trainer.node_rank == expected["node_rank"]
assert trainer.world_size == expected["world_size"]