lightning/tests/tests_pytorch/plugins/precision/hpu/test_hpu.py

96 lines
3.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from pytorch_lightning import Callback, LightningModule, Trainer
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.plugins import HPUPrecisionPlugin
from pytorch_lightning.strategies.single_hpu import SingleHPUStrategy
from tests_pytorch.helpers.runif import RunIf
@pytest.fixture
def hmp_params(request):
return {
"opt_level": "O1",
"verbose": False,
"bf16_file_path": request.config.getoption("--hmp-bf16"),
"fp32_file_path": request.config.getoption("--hmp-fp32"),
}
@RunIf(hpu=True)
def test_precision_plugin(hmp_params):
plugin = HPUPrecisionPlugin(precision="bf16", **hmp_params)
assert plugin.precision == "bf16"
@RunIf(hpu=True)
def test_mixed_precision(tmpdir, hmp_params: dict):
class TestCallback(Callback):
def setup(self, trainer: Trainer, pl_module: LightningModule, stage: str) -> None:
assert trainer.strategy.model.precision == "bf16"
raise SystemExit
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
accelerator="hpu",
devices=1,
plugins=[HPUPrecisionPlugin(precision="bf16", **hmp_params)],
callbacks=TestCallback(),
)
assert isinstance(trainer.strategy, SingleHPUStrategy)
assert isinstance(trainer.strategy.precision_plugin, HPUPrecisionPlugin)
assert trainer.strategy.precision_plugin.precision == "bf16"
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(hpu=True)
def test_pure_half_precision(tmpdir, hmp_params: dict):
class TestCallback(Callback):
def on_train_start(self, trainer: Trainer, pl_module: LightningModule) -> None:
assert trainer.strategy.model.precision == 16
for param in trainer.strategy.model.parameters():
assert param.dtype == torch.float16
raise SystemExit
model = BoringModel()
model = model.half()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
accelerator="hpu",
devices=1,
plugins=[HPUPrecisionPlugin(precision=16, **hmp_params)],
callbacks=TestCallback(),
)
assert isinstance(trainer.strategy, SingleHPUStrategy)
assert isinstance(trainer.strategy.precision_plugin, HPUPrecisionPlugin)
assert trainer.strategy.precision_plugin.precision == 16
with pytest.raises(SystemExit):
trainer.fit(model)
@RunIf(hpu=True)
def test_unsupported_precision_plugin():
with pytest.raises(ValueError, match=r"accelerator='hpu', precision='mixed'\)` is not supported."):
HPUPrecisionPlugin(precision="mixed")