lightning/tests/utilities/test_all_gather_grad.py

121 lines
4.0 KiB
Python

import os
import sys
import numpy as np
import torch
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.utilities import AllGatherGrad
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
def setup_ddp(rank, world_size):
""" Setup ddp enviroment """
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "8088"
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
def _test_all_gather_ddp(rank, world_size):
setup_ddp(rank, world_size)
tensor1 = torch.ones(8, requires_grad=True)
tensor2 = torch.ones((8, 16, 32), requires_grad=True)
tensor1_gathered = AllGatherGrad.apply(tensor1)
tensor2_gathered = AllGatherGrad.apply(tensor2)
tensor1_gathered = tensor1_gathered * rank
tensor2_gathered = tensor2_gathered * rank
tensor1_gathered.sum().backward()
tensor2_gathered.sum().backward()
grad1 = torch.zeros_like(tensor1.grad).fill_(torch.arange(world_size).sum().float())
grad2 = torch.zeros_like(tensor2.grad).fill_(torch.arange(world_size).sum().float())
assert torch.allclose(grad1, tensor1.grad)
assert torch.allclose(grad2, tensor2.grad)
@RunIf(skip_windows=True)
def test_all_gather_ddp():
world_size = 3
torch.multiprocessing.spawn(_test_all_gather_ddp, args=(world_size, ), nprocs=world_size)
@RunIf(min_gpus=2, skip_windows=True, special=True)
def test_all_gather_collection(tmpdir):
class TestModel(BoringModel):
training_epoch_end_called = False
def training_epoch_end(self, outputs) -> None:
losses = torch.stack([x["loss"] for x in outputs])
gathered_loss = self.all_gather({
"losses_tensor_int": torch.rand(2, 2).int().t(),
"losses_tensor_float": torch.rand(2, 2).t(),
"losses_np_ndarray": np.array([1, 2, 3]),
"losses_bool": [True, False],
"losses_float": [0., 1., 2.],
"losses_int": [0, 1, 2],
"losses": losses,
"losses_list": [losses, losses]
})
assert gathered_loss["losses_tensor_int"][0].dtype == torch.int32
assert gathered_loss["losses_tensor_float"][0].dtype == torch.float
assert gathered_loss["losses_np_ndarray"][0].dtype == torch.int64
# torch.bool can't be all_gathered
assert gathered_loss["losses_bool"][0].dtype == torch.uint8
assert gathered_loss["losses_float"][0].dtype == torch.float
assert gathered_loss["losses_int"][0].dtype == torch.int
assert gathered_loss["losses_list"][0].numel() == 2 * len(losses)
assert gathered_loss["losses"].numel() == 2 * len(losses)
self.training_epoch_end_called = True
seed_everything(42)
model = TestModel()
limit_train_batches = 8
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
accumulate_grad_batches=2,
gpus=2,
accelerator="ddp",
)
trainer.fit(model)
assert model.training_epoch_end_called
@RunIf(min_gpus=2, skip_windows=True, special=True)
def test_all_gather_sync_grads(tmpdir):
class TestModel(BoringModel):
training_step_called = False
def training_step(self, batch, batch_idx):
self.training_step_called = True
tensor = torch.rand(2, 2, requires_grad=True, device=self.device)
gathered_tensor = self.all_gather(tensor, sync_grads=True)
assert gathered_tensor.shape == torch.Size([2, 2, 2])
loss = gathered_tensor.sum()
return loss
model = TestModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True, gpus=2, accelerator="ddp")
trainer.fit(model)
assert model.training_step_called