lightning/tests/overrides/test_data_parallel.py

207 lines
6.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import MagicMock, Mock
import pytest
import torch
import torch.nn as nn
from torch.nn import DataParallel
from pytorch_lightning import LightningModule
from pytorch_lightning.core.decorators import auto_move_data
from pytorch_lightning.overrides import LightningDistributedModule
from pytorch_lightning.overrides.data_parallel import (
LightningParallelModule,
python_scalar_to_tensor,
unsqueeze_scalar_tensor,
)
from pytorch_lightning.trainer.states import RunningStage
from tests.helpers import BoringModel
from tests.helpers.runif import RunIf
@pytest.mark.parametrize("wrapper_class", [
LightningParallelModule,
LightningDistributedModule,
])
@pytest.mark.parametrize(
"stage", [
("training", "training_step"),
("testing", "test_step"),
("validating", "validation_step"),
("predicting", "predict_step"),
]
)
def test_lightning_wrapper_module_methods(wrapper_class, stage):
""" Test that the LightningWrapper redirects .forward() to the LightningModule methods. """
pl_module = MagicMock()
wrapped_module = wrapper_class(pl_module)
batch = torch.rand(5)
batch_idx = 3
prop, step = stage
pl_module.trainer.sanity_checking = False
for p in ("training", "testing", "validating", "predicting"):
setattr(pl_module.trainer, p, p == prop)
wrapped_module(batch, batch_idx)
getattr(pl_module, step).assert_called_with(batch, batch_idx)
@pytest.mark.parametrize(
"inp,expected", [
[torch.tensor(1.0), torch.tensor([1.0])],
[torch.tensor([2.0]), torch.tensor([2.0])],
[torch.ones(3, 4, 5), torch.ones(3, 4, 5)],
]
)
def test_unsqueeze_scalar_tensor(inp, expected):
""" Test that the utility function unsqueezes only scalar tensors. """
assert torch.all(unsqueeze_scalar_tensor(inp).eq(expected))
@RunIf(min_gpus=2)
def test_lightning_parallel_module_unsqueeze_scalar():
""" Test that LightningParallelModule takes care of un-squeezeing 0-dim tensors. """
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
loss = output["loss"]
loss = loss.squeeze()
assert loss.dim() == 0
# PyTorch usually warns about 0-dim tensors returned in DP
return {"loss": loss}
model = TestModel()
model.trainer = Mock()
model.trainer.state.stage = RunningStage.TRAINING
batch = torch.rand(2, 32).cuda()
batch_idx = 0
wrapped_model = LightningParallelModule(model).cuda()
dp_module = DataParallel(wrapped_model, device_ids=[0, 1])
output = wrapped_model(batch, batch_idx)
assert output["loss"].dim() == 1
with pytest.warns(None) as record:
output = dp_module(batch, batch_idx)
assert output["loss"].dim() == 1
assert not record
@pytest.mark.parametrize(
"inp,expected", [
[1.0, torch.tensor([1.0])],
[2, torch.tensor([2.0])],
[True, torch.tensor([True])],
]
)
def test_python_scalar_to_tensor(inp, expected):
assert torch.all(python_scalar_to_tensor(inp).eq(expected))
@RunIf(min_gpus=1)
@pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)])
def test_lightning_parallel_module_python_scalar_conversion(device):
""" Test that LightningParallelModule can convert Python scalars to tensors. """
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
# PyTorch DP does not support Python scalars, Lightning converts them to tensors
output.update({"python scalar": 12.3})
return output
model = TestModel().to(device)
model.trainer = Mock()
model.trainer.state.stage = RunningStage.TRAINING
batch = torch.rand(2, 32).to(device)
batch_idx = 0
wrapped_model = LightningParallelModule(model)
output = wrapped_model(batch, batch_idx)
assert output["python scalar"] == torch.tensor([12.3], device=device)
@RunIf(min_gpus=2)
@pytest.mark.parametrize(
"nest, unnest", [
(lambda x: x, lambda x: x),
(lambda x: dict(data=x), lambda x: x["data"]),
(lambda x: [x, (x, x)], lambda x: x[1][0]),
]
)
def test_lightning_parallel_module_device_access(nest, unnest):
""" Test that self.device returns the correct value in replicas of DataParallel. """
class DeviceAccessModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = nn.Linear(2, 3)
@auto_move_data
def training_step(self, batch, batch_idx):
batch = unnest(batch)
assert batch.shape == torch.Size([1, 1])
assert self.device.index == batch.item()
assert self.device == self.layer.weight.device
return torch.tensor(1, device=self.device)
pl_module = DeviceAccessModel()
# required for redirecting the forward call to training_step
pl_module.trainer = Mock()
pl_module.trainer.state.stage = RunningStage.TRAINING
root_device = torch.device("cuda", 0)
wrapped_module = LightningParallelModule(pl_module).to(root_device)
model = DataParallel(wrapped_module, device_ids=[0, 1])
data = torch.tensor([0.0, 1.0], device=root_device).view(2, 1) # one value per gpu
data = data.to(root_device)
data = nest(data)
output = model(data, 0)
assert output.device == root_device
assert pl_module.device == root_device
assert torch.all(output.cpu().eq(torch.tensor([1, 1])))
@RunIf(min_gpus=2)
def test_lightning_parallel_module_device_access_warning():
""" Test that we show a warning when the device can't be inferred from the input. """
class DeviceAccessModel(LightningModule):
def training_step(self, batch, batch_idx):
pass
pl_module = DeviceAccessModel()
# required for redirecting the forward call to training_step
pl_module.trainer = Mock()
pl_module.trainer.state.stage = RunningStage.TRAINING
wrapped_module = LightningParallelModule(pl_module).cuda()
model = DataParallel(wrapped_module, device_ids=[0, 1])
data = dict(x=1) # contains no tensors
with pytest.warns(UserWarning, match="Could not determine on which device the inputs are."):
_ = model(data, 0)