207 lines
6.8 KiB
Python
207 lines
6.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from unittest.mock import MagicMock, Mock
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.nn import DataParallel
|
|
|
|
from pytorch_lightning import LightningModule
|
|
from pytorch_lightning.core.decorators import auto_move_data
|
|
from pytorch_lightning.overrides import LightningDistributedModule
|
|
from pytorch_lightning.overrides.data_parallel import (
|
|
LightningParallelModule,
|
|
python_scalar_to_tensor,
|
|
unsqueeze_scalar_tensor,
|
|
)
|
|
from pytorch_lightning.trainer.states import RunningStage
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@pytest.mark.parametrize("wrapper_class", [
|
|
LightningParallelModule,
|
|
LightningDistributedModule,
|
|
])
|
|
@pytest.mark.parametrize(
|
|
"stage", [
|
|
("training", "training_step"),
|
|
("testing", "test_step"),
|
|
("validating", "validation_step"),
|
|
("predicting", "predict_step"),
|
|
]
|
|
)
|
|
def test_lightning_wrapper_module_methods(wrapper_class, stage):
|
|
""" Test that the LightningWrapper redirects .forward() to the LightningModule methods. """
|
|
pl_module = MagicMock()
|
|
wrapped_module = wrapper_class(pl_module)
|
|
|
|
batch = torch.rand(5)
|
|
batch_idx = 3
|
|
|
|
prop, step = stage
|
|
pl_module.trainer.sanity_checking = False
|
|
|
|
for p in ("training", "testing", "validating", "predicting"):
|
|
setattr(pl_module.trainer, p, p == prop)
|
|
|
|
wrapped_module(batch, batch_idx)
|
|
getattr(pl_module, step).assert_called_with(batch, batch_idx)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inp,expected", [
|
|
[torch.tensor(1.0), torch.tensor([1.0])],
|
|
[torch.tensor([2.0]), torch.tensor([2.0])],
|
|
[torch.ones(3, 4, 5), torch.ones(3, 4, 5)],
|
|
]
|
|
)
|
|
def test_unsqueeze_scalar_tensor(inp, expected):
|
|
""" Test that the utility function unsqueezes only scalar tensors. """
|
|
assert torch.all(unsqueeze_scalar_tensor(inp).eq(expected))
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_lightning_parallel_module_unsqueeze_scalar():
|
|
""" Test that LightningParallelModule takes care of un-squeezeing 0-dim tensors. """
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = super().training_step(batch, batch_idx)
|
|
loss = output["loss"]
|
|
loss = loss.squeeze()
|
|
assert loss.dim() == 0
|
|
# PyTorch usually warns about 0-dim tensors returned in DP
|
|
return {"loss": loss}
|
|
|
|
model = TestModel()
|
|
model.trainer = Mock()
|
|
model.trainer.state.stage = RunningStage.TRAINING
|
|
batch = torch.rand(2, 32).cuda()
|
|
batch_idx = 0
|
|
|
|
wrapped_model = LightningParallelModule(model).cuda()
|
|
dp_module = DataParallel(wrapped_model, device_ids=[0, 1])
|
|
|
|
output = wrapped_model(batch, batch_idx)
|
|
assert output["loss"].dim() == 1
|
|
|
|
with pytest.warns(None) as record:
|
|
output = dp_module(batch, batch_idx)
|
|
|
|
assert output["loss"].dim() == 1
|
|
assert not record
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"inp,expected", [
|
|
[1.0, torch.tensor([1.0])],
|
|
[2, torch.tensor([2.0])],
|
|
[True, torch.tensor([True])],
|
|
]
|
|
)
|
|
def test_python_scalar_to_tensor(inp, expected):
|
|
assert torch.all(python_scalar_to_tensor(inp).eq(expected))
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@pytest.mark.parametrize("device", [torch.device("cpu"), torch.device("cuda", 0)])
|
|
def test_lightning_parallel_module_python_scalar_conversion(device):
|
|
""" Test that LightningParallelModule can convert Python scalars to tensors. """
|
|
|
|
class TestModel(BoringModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
output = super().training_step(batch, batch_idx)
|
|
# PyTorch DP does not support Python scalars, Lightning converts them to tensors
|
|
output.update({"python scalar": 12.3})
|
|
return output
|
|
|
|
model = TestModel().to(device)
|
|
model.trainer = Mock()
|
|
model.trainer.state.stage = RunningStage.TRAINING
|
|
batch = torch.rand(2, 32).to(device)
|
|
batch_idx = 0
|
|
|
|
wrapped_model = LightningParallelModule(model)
|
|
output = wrapped_model(batch, batch_idx)
|
|
assert output["python scalar"] == torch.tensor([12.3], device=device)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
"nest, unnest", [
|
|
(lambda x: x, lambda x: x),
|
|
(lambda x: dict(data=x), lambda x: x["data"]),
|
|
(lambda x: [x, (x, x)], lambda x: x[1][0]),
|
|
]
|
|
)
|
|
def test_lightning_parallel_module_device_access(nest, unnest):
|
|
""" Test that self.device returns the correct value in replicas of DataParallel. """
|
|
|
|
class DeviceAccessModel(LightningModule):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer = nn.Linear(2, 3)
|
|
|
|
@auto_move_data
|
|
def training_step(self, batch, batch_idx):
|
|
batch = unnest(batch)
|
|
assert batch.shape == torch.Size([1, 1])
|
|
assert self.device.index == batch.item()
|
|
assert self.device == self.layer.weight.device
|
|
return torch.tensor(1, device=self.device)
|
|
|
|
pl_module = DeviceAccessModel()
|
|
# required for redirecting the forward call to training_step
|
|
pl_module.trainer = Mock()
|
|
pl_module.trainer.state.stage = RunningStage.TRAINING
|
|
|
|
root_device = torch.device("cuda", 0)
|
|
wrapped_module = LightningParallelModule(pl_module).to(root_device)
|
|
model = DataParallel(wrapped_module, device_ids=[0, 1])
|
|
|
|
data = torch.tensor([0.0, 1.0], device=root_device).view(2, 1) # one value per gpu
|
|
data = data.to(root_device)
|
|
data = nest(data)
|
|
output = model(data, 0)
|
|
assert output.device == root_device
|
|
assert pl_module.device == root_device
|
|
assert torch.all(output.cpu().eq(torch.tensor([1, 1])))
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_lightning_parallel_module_device_access_warning():
|
|
""" Test that we show a warning when the device can't be inferred from the input. """
|
|
|
|
class DeviceAccessModel(LightningModule):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
pass
|
|
|
|
pl_module = DeviceAccessModel()
|
|
# required for redirecting the forward call to training_step
|
|
pl_module.trainer = Mock()
|
|
pl_module.trainer.state.stage = RunningStage.TRAINING
|
|
|
|
wrapped_module = LightningParallelModule(pl_module).cuda()
|
|
model = DataParallel(wrapped_module, device_ids=[0, 1])
|
|
|
|
data = dict(x=1) # contains no tensors
|
|
with pytest.warns(UserWarning, match="Could not determine on which device the inputs are."):
|
|
_ = model(data, 0)
|