498 lines
15 KiB
Python
498 lines
15 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from argparse import ArgumentParser
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data import DataLoader
|
|
|
|
import tests.helpers.pipelines as tpipes
|
|
import tests.helpers.utils as tutils
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.accelerators import TPUAccelerator
|
|
from pytorch_lightning.callbacks import EarlyStopping
|
|
from pytorch_lightning.plugins import TPUSpawnPlugin
|
|
from pytorch_lightning.trainer.connectors.logger_connector.result import Result
|
|
from pytorch_lightning.utilities import _TPU_AVAILABLE
|
|
from pytorch_lightning.utilities.distributed import ReduceOp
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers import BoringModel, RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
from tests.helpers.utils import pl_multi_process_test
|
|
|
|
if _TPU_AVAILABLE:
|
|
import torch_xla
|
|
import torch_xla.distributed.xla_multiprocessing as xmp
|
|
SERIAL_EXEC = xmp.MpSerialExecutor()
|
|
|
|
_LARGER_DATASET = RandomDataset(32, 2000)
|
|
|
|
|
|
# 8 cores needs a big dataset
|
|
def _serial_train_loader():
|
|
return DataLoader(_LARGER_DATASET, batch_size=32)
|
|
|
|
|
|
class SerialLoaderBoringModel(BoringModel):
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 2000), batch_size=32)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(RandomDataset(32, 2000), batch_size=32)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_tpu_cores_1(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
tpu_cores=1,
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_core', [1, 5])
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_tpu_index(tmpdir, tpu_core):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
tpu_cores=[tpu_core],
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_tpu_cores_8(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=8,
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
)
|
|
|
|
# 8 cores needs a big dataset
|
|
model = SerialLoaderBoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False, min_acc=0.05)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_cores_1(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
tpu_cores=1,
|
|
limit_train_batches=8,
|
|
limit_val_batches=2,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_core', [1, 5])
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_index(tmpdir, tpu_core):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
tpu_cores=[tpu_core],
|
|
limit_train_batches=4,
|
|
limit_val_batches=2,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False)
|
|
assert torch_xla._XLAC._xla_get_default_device() == f'xla:{tpu_core}'
|
|
assert os.environ.get('XLA_USE_BF16') == str(1), "XLA_USE_BF16 was not set in environment variables"
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_16bit_tpu_cores_8(tmpdir):
|
|
"""Make sure model trains on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
precision=16,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=8,
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
)
|
|
|
|
# 8 cores needs a big dataset
|
|
model = SerialLoaderBoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False, min_acc=0.05)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_model_tpu_early_stop(tmpdir):
|
|
"""Test if single TPU core training works"""
|
|
|
|
class CustomBoringModel(BoringModel):
|
|
|
|
def validation_step(self, *args, **kwargs):
|
|
out = super().validation_step(*args, **kwargs)
|
|
self.log('val_loss', out['x'])
|
|
return out
|
|
|
|
tutils.reset_seed()
|
|
model = CustomBoringModel()
|
|
trainer = Trainer(
|
|
callbacks=[EarlyStopping(monitor='val_loss')],
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=2,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
tpu_cores=8,
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(test_dataloaders=DataLoader(RandomDataset(32, 2000), batch_size=32))
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_grad_norm(tmpdir):
|
|
"""Test if grad_norm works on TPU."""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=4,
|
|
tpu_cores=1,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
gradient_clip_val=0.5,
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_clip_grad_by_value(tmpdir):
|
|
"""Test if clip_gradients by value works on TPU"""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=4,
|
|
tpu_cores=1,
|
|
limit_train_batches=10,
|
|
limit_val_batches=10,
|
|
gradient_clip_val=0.5,
|
|
gradient_clip_algorithm='value'
|
|
)
|
|
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_dataloaders_passed_to_fit(tmpdir):
|
|
"""Test if dataloaders passed to trainer works on TPU"""
|
|
tutils.reset_seed()
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
tpu_cores=8,
|
|
)
|
|
trainer.fit(
|
|
model,
|
|
train_dataloader=model.train_dataloader(),
|
|
val_dataloaders=model.val_dataloader(),
|
|
)
|
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
['tpu_cores', 'expected_tpu_id'],
|
|
[pytest.param(1, None), pytest.param(8, None),
|
|
pytest.param([1], 1), pytest.param([8], 8)],
|
|
)
|
|
@RunIf(tpu=True)
|
|
def test_tpu_id_to_be_as_expected(tpu_cores, expected_tpu_id):
|
|
"""Test if trainer.tpu_id is set as expected"""
|
|
assert Trainer(tpu_cores=tpu_cores).accelerator_connector.tpu_id == expected_tpu_id
|
|
|
|
|
|
def test_tpu_misconfiguration():
|
|
"""Test if trainer.tpu_id is set as expected"""
|
|
with pytest.raises(MisconfigurationException, match="`tpu_cores` can only be"):
|
|
Trainer(tpu_cores=[1, 8])
|
|
|
|
|
|
@pytest.mark.skipif(_TPU_AVAILABLE, reason="test requires missing TPU")
|
|
def test_exception_when_no_tpu_found(tmpdir):
|
|
"""Test if exception is thrown when xla devices are not available"""
|
|
|
|
with pytest.raises(MisconfigurationException, match='No TPU devices were found.'):
|
|
Trainer(tpu_cores=8)
|
|
|
|
|
|
@pytest.mark.parametrize('tpu_cores', [1, 8, [1]])
|
|
@RunIf(tpu=True)
|
|
def test_distributed_backend_set_when_using_tpu(tmpdir, tpu_cores):
|
|
"""Test if distributed_backend is set to `tpu` when tpu_cores is not None"""
|
|
assert Trainer(tpu_cores=tpu_cores).distributed_backend == "tpu"
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_broadcast_on_tpu():
|
|
""" Checks if an object from the master process is broadcasted to other processes correctly"""
|
|
|
|
def test_broadcast(rank):
|
|
trainer = Trainer(tpu_cores=8)
|
|
assert isinstance(trainer.accelerator, TPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, TPUSpawnPlugin)
|
|
obj = ("ver_0.5", "logger_name", rank)
|
|
result = trainer.training_type_plugin.broadcast(obj)
|
|
assert result == ("ver_0.5", "logger_name", 0)
|
|
|
|
xmp.spawn(test_broadcast, nprocs=8, start_method='fork')
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["tpu_cores", "expected_tpu_id", "error_expected"],
|
|
[
|
|
pytest.param(1, None, False),
|
|
pytest.param(8, None, False),
|
|
pytest.param([1], 1, False),
|
|
pytest.param([8], 8, False),
|
|
pytest.param("1,", 1, False),
|
|
pytest.param("1", None, False),
|
|
pytest.param("9, ", 9, True),
|
|
pytest.param([9], 9, True),
|
|
pytest.param([0], 0, True),
|
|
pytest.param(2, None, True),
|
|
pytest.param(10, None, True),
|
|
],
|
|
)
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_choice(tmpdir, tpu_cores, expected_tpu_id, error_expected):
|
|
if error_expected:
|
|
with pytest.raises(MisconfigurationException, match=r".*tpu_cores` can only be 1, 8 or [<1-8>]*"):
|
|
Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores)
|
|
else:
|
|
trainer = Trainer(default_root_dir=tmpdir, tpu_cores=tpu_cores)
|
|
assert trainer.accelerator_connector.tpu_id == expected_tpu_id
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
['cli_args', 'expected'],
|
|
[pytest.param('--tpu_cores=8', {'tpu_cores': 8}),
|
|
pytest.param("--tpu_cores=1,", {'tpu_cores': '1,'})]
|
|
)
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_cores_with_argparse(cli_args, expected):
|
|
"""Test passing tpu_cores in command line"""
|
|
cli_args = cli_args.split(' ') if cli_args else []
|
|
with mock.patch("argparse._sys.argv", ["any.py"] + cli_args):
|
|
parser = ArgumentParser(add_help=False)
|
|
parser = Trainer.add_argparse_args(parent_parser=parser)
|
|
args = Trainer.parse_argparser(parser)
|
|
|
|
for k, v in expected.items():
|
|
assert getattr(args, k) == v
|
|
assert Trainer.from_argparse_args(args)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_reduce():
|
|
"""Test tpu spawn reduce operation """
|
|
|
|
def test_reduce(rank):
|
|
trainer = Trainer(tpu_cores=8)
|
|
# faster this way
|
|
reduce_ops = ["mean", "AVG", "undefined", "sum", ReduceOp.SUM, ReduceOp.MAX]
|
|
for reduce_op in reduce_ops:
|
|
if reduce_op == "undefined" or reduce_op == ReduceOp.MAX:
|
|
with pytest.raises(MisconfigurationException, match="TPUSpawn TrainingTypePlugin only support"):
|
|
result = trainer.training_type_plugin.reduce(1, reduce_op)
|
|
else:
|
|
result = trainer.training_type_plugin.reduce(1, reduce_op)
|
|
if isinstance(reduce_op, str) and reduce_op.lower() in ("mean", "avg"):
|
|
assert result.item() == 1
|
|
else:
|
|
assert result.item() == 8
|
|
|
|
xmp.spawn(test_reduce, nprocs=8, start_method='fork')
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
@pytest.mark.parametrize("clip_val", [10])
|
|
@mock.patch("torch.nn.utils.clip_grad_norm_")
|
|
def test_tpu_precision_16_clip_gradients(mock_clip_grad_norm, clip_val, tmpdir):
|
|
"""
|
|
Ensure that clip gradients is only called if the value is greater than 0.
|
|
TODO: Fix (test fails with parametrize)
|
|
"""
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=1,
|
|
tpu_cores=1,
|
|
precision=16,
|
|
limit_train_batches=4,
|
|
limit_val_batches=4,
|
|
gradient_clip_val=clip_val,
|
|
)
|
|
model = BoringModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
if clip_val > 0:
|
|
mock_clip_grad_norm.assert_called()
|
|
else:
|
|
mock_clip_grad_norm.assert_not_called()
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_if_test_works_with_checkpoint_false(tmpdir):
|
|
"""Ensure that model trains properly when `checkpoint_callback` is set to False."""
|
|
|
|
# Train a model on TPU
|
|
model = BoringModel()
|
|
trainer = Trainer(max_epochs=1, tpu_cores=8, default_root_dir=tmpdir, fast_dev_run=True, checkpoint_callback=False)
|
|
trainer.fit(model)
|
|
assert trainer.state.finished, f"Training failed with {trainer.state}"
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_sync_dist():
|
|
"""Test tpu spawn sync dist operation """
|
|
|
|
def test_sync_dist(rank):
|
|
tensor = torch.tensor([1.0])
|
|
training_type_plugin = TPUSpawnPlugin()
|
|
|
|
res = Result()
|
|
res.log(
|
|
"test_tensor",
|
|
tensor,
|
|
sync_fn=training_type_plugin.reduce,
|
|
sync_dist=True,
|
|
sync_dist_op=torch.distributed.ReduceOp.SUM
|
|
)
|
|
|
|
assert res["test_tensor"].item() == 8, "Result-Log does not work properly with TPU Spawn and Tensors"
|
|
|
|
xmp.spawn(test_sync_dist, nprocs=8, start_method='fork')
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_debug_mode(tmpdir):
|
|
"""Test if debug mode works on TPU."""
|
|
|
|
class DebugModel(BoringModel):
|
|
|
|
def on_train_start(self):
|
|
assert os.environ.get("PT_XLA_DEBUG") == str(1), "PT_XLA_DEBUG was not set in environment variables"
|
|
|
|
def teardown(self, stage):
|
|
assert "PT_XLA_DEBUG" not in os.environ
|
|
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=4,
|
|
tpu_cores=8,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
plugins=TPUSpawnPlugin(debug=True),
|
|
)
|
|
|
|
model = DebugModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|
|
|
|
|
|
@RunIf(tpu=True)
|
|
@pl_multi_process_test
|
|
def test_tpu_host_world_size(tmpdir):
|
|
"""Test Host World size env setup on TPU."""
|
|
|
|
class DebugModel(BoringModel):
|
|
|
|
def on_train_start(self):
|
|
assert os.environ.get("XRT_HOST_WORLD_SIZE") == str(1)
|
|
|
|
def teardown(self, stage):
|
|
assert "XRT_HOST_WORLD_SIZE" not in os.environ
|
|
|
|
tutils.reset_seed()
|
|
trainer_options = dict(
|
|
default_root_dir=tmpdir,
|
|
progress_bar_refresh_rate=0,
|
|
max_epochs=4,
|
|
tpu_cores=8,
|
|
limit_train_batches=0.4,
|
|
limit_val_batches=0.4,
|
|
)
|
|
|
|
model = DebugModel()
|
|
tpipes.run_model_test(trainer_options, model, on_gpu=False, with_hpc=False)
|