lightning/tests/models/test_sync_batchnorm.py

129 lines
3.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch_lightning import LightningModule, seed_everything, Trainer
from pytorch_lightning.plugins import DDPSpawnPlugin
from pytorch_lightning.plugins.environments import LightningEnvironment
from pytorch_lightning.utilities import FLOAT16_EPSILON
from tests.helpers.datamodules import MNISTDataModule
from tests.helpers.runif import RunIf
from tests.helpers.utils import set_random_master_port
class SyncBNModule(LightningModule):
def __init__(self, gpu_count=1, **kwargs):
super().__init__()
self.gpu_count = gpu_count
self.bn_targets = None
if 'bn_targets' in kwargs:
self.bn_targets = kwargs['bn_targets']
self.linear = nn.Linear(28 * 28, 10)
self.bn_layer = nn.BatchNorm1d(28 * 28)
def forward(self, x, batch_idx):
with torch.no_grad():
out_bn = self.bn_layer(x.view(x.size(0), -1))
if self.bn_targets:
bn_target = self.bn_targets[batch_idx]
# executes on both GPUs
bn_target = bn_target[self.trainer.local_rank::self.gpu_count]
bn_target = bn_target.to(out_bn.device)
assert torch.sum(torch.abs(bn_target - out_bn)) < FLOAT16_EPSILON
out = self.linear(out_bn)
return out, out_bn
def training_step(self, batch, batch_idx):
x, y = batch
y_hat, _ = self(x, batch_idx)
loss = F.cross_entropy(y_hat, y)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.linear.parameters(), lr=0.02)
# TODO: Fatal Python error: Bus error
@pytest.mark.skip(reason="Fatal Python error: Bus error")
@RunIf(min_gpus=2, special=True)
def test_sync_batchnorm_ddp(tmpdir):
seed_everything(234)
set_random_master_port()
# define datamodule and dataloader
dm = MNISTDataModule()
dm.prepare_data()
dm.setup(stage=None)
train_dataloader = dm.train_dataloader()
model = SyncBNModule()
bn_outputs = []
# shuffle is false by default
for batch_idx, batch in enumerate(train_dataloader):
x, _ = batch
_, out_bn = model.forward(x, batch_idx)
bn_outputs.append(out_bn)
# get 3 steps
if batch_idx == 2:
break
bn_outputs = [x.cuda() for x in bn_outputs]
# reset datamodule
# batch-size = 16 because 2 GPUs in DDP
dm = MNISTDataModule(batch_size=16, dist_sampler=True)
dm.prepare_data()
dm.setup(stage=None)
model = SyncBNModule(gpu_count=2, bn_targets=bn_outputs)
ddp = DDPSpawnPlugin(
parallel_devices=[torch.device("cuda", 0), torch.device("cuda", 1)],
num_nodes=1,
sync_batchnorm=True,
cluster_environment=LightningEnvironment(),
find_unused_parameters=True
)
trainer = Trainer(
default_root_dir=tmpdir,
gpus=2,
num_nodes=1,
accelerator='ddp_spawn',
max_epochs=1,
max_steps=3,
sync_batchnorm=True,
num_sanity_val_steps=0,
replace_sampler_ddp=False,
plugins=[ddp]
)
trainer.fit(model, dm)
assert trainer.state.finished, "Sync batchnorm failing with DDP"