271 lines
9.3 KiB
Python
271 lines
9.3 KiB
Python
import os
|
|
import pickle
|
|
import sys
|
|
from functools import partial
|
|
from typing import Callable
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from torch.multiprocessing import Pool, set_start_method
|
|
from torchmetrics import Metric
|
|
|
|
try:
|
|
set_start_method("spawn")
|
|
except RuntimeError:
|
|
pass
|
|
|
|
NUM_PROCESSES = 2
|
|
NUM_BATCHES = 10
|
|
BATCH_SIZE = 32
|
|
NUM_CLASSES = 5
|
|
EXTRA_DIM = 3
|
|
THRESHOLD = 0.5
|
|
|
|
|
|
def setup_ddp(rank, world_size):
|
|
""" Setup ddp enviroment """
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = "8088"
|
|
|
|
if torch.distributed.is_available() and sys.platform not in ("win32", "cygwin"):
|
|
torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size)
|
|
|
|
|
|
def _assert_allclose(pl_result, sk_result, atol: float = 1e-8):
|
|
""" Utility function for recursively asserting that two results are within
|
|
a certain tolerance
|
|
"""
|
|
# single output compare
|
|
if isinstance(pl_result, torch.Tensor):
|
|
assert np.allclose(pl_result.numpy(), sk_result, atol=atol, equal_nan=True)
|
|
# multi output compare
|
|
elif isinstance(pl_result, (tuple, list)):
|
|
for pl_res, sk_res in zip(pl_result, sk_result):
|
|
_assert_allclose(pl_res, sk_res, atol=atol)
|
|
else:
|
|
raise ValueError('Unknown format for comparison')
|
|
|
|
|
|
def _assert_tensor(pl_result):
|
|
""" Utility function for recursively checking that some input only consist of
|
|
torch tensors
|
|
"""
|
|
if isinstance(pl_result, (list, tuple)):
|
|
for plr in pl_result:
|
|
_assert_tensor(plr)
|
|
else:
|
|
assert isinstance(pl_result, torch.Tensor)
|
|
|
|
|
|
def _class_test(
|
|
rank: int,
|
|
worldsize: int,
|
|
preds: torch.Tensor,
|
|
target: torch.Tensor,
|
|
metric_class: Metric,
|
|
sk_metric: Callable,
|
|
dist_sync_on_step: bool,
|
|
metric_args: dict = {},
|
|
check_dist_sync_on_step: bool = True,
|
|
check_batch: bool = True,
|
|
atol: float = 1e-8,
|
|
):
|
|
"""Utility function doing the actual comparison between lightning class metric
|
|
and reference metric.
|
|
|
|
Args:
|
|
rank: rank of current process
|
|
worldsize: number of processes
|
|
preds: torch tensor with predictions
|
|
target: torch tensor with targets
|
|
metric_class: lightning metric class that should be tested
|
|
sk_metric: callable function that is used for comparison
|
|
dist_sync_on_step: bool, if true will synchronize metric state across
|
|
processes at each ``forward()``
|
|
metric_args: dict with additional arguments used for class initialization
|
|
check_dist_sync_on_step: bool, if true will check if the metric is also correctly
|
|
calculated per batch per device (and not just at the end)
|
|
check_batch: bool, if true will check if the metric is also correctly
|
|
calculated across devices for each batch (and not just at the end)
|
|
"""
|
|
# Instanciate lightning metric
|
|
metric = metric_class(compute_on_step=True, dist_sync_on_step=dist_sync_on_step, **metric_args)
|
|
|
|
# verify metrics work after being loaded from pickled state
|
|
pickled_metric = pickle.dumps(metric)
|
|
metric = pickle.loads(pickled_metric)
|
|
|
|
for i in range(rank, NUM_BATCHES, worldsize):
|
|
batch_result = metric(preds[i], target[i])
|
|
|
|
if metric.dist_sync_on_step:
|
|
if rank == 0:
|
|
ddp_preds = torch.cat([preds[i + r] for r in range(worldsize)])
|
|
ddp_target = torch.cat([target[i + r] for r in range(worldsize)])
|
|
sk_batch_result = sk_metric(ddp_preds, ddp_target)
|
|
# assert for dist_sync_on_step
|
|
if check_dist_sync_on_step:
|
|
_assert_allclose(batch_result, sk_batch_result, atol=atol)
|
|
else:
|
|
sk_batch_result = sk_metric(preds[i], target[i])
|
|
# assert for batch
|
|
if check_batch:
|
|
_assert_allclose(batch_result, sk_batch_result, atol=atol)
|
|
|
|
# check on all batches on all ranks
|
|
result = metric.compute()
|
|
_assert_tensor(result)
|
|
|
|
total_preds = torch.cat([preds[i] for i in range(NUM_BATCHES)])
|
|
total_target = torch.cat([target[i] for i in range(NUM_BATCHES)])
|
|
sk_result = sk_metric(total_preds, total_target)
|
|
|
|
# assert after aggregation
|
|
_assert_allclose(result, sk_result, atol=atol)
|
|
|
|
|
|
def _functional_test(
|
|
preds: torch.Tensor,
|
|
target: torch.Tensor,
|
|
metric_functional: Callable,
|
|
sk_metric: Callable,
|
|
metric_args: dict = {},
|
|
atol: float = 1e-8,
|
|
):
|
|
"""Utility function doing the actual comparison between lightning functional metric
|
|
and reference metric.
|
|
|
|
Args:
|
|
preds: torch tensor with predictions
|
|
target: torch tensor with targets
|
|
metric_functional: lightning metric functional that should be tested
|
|
sk_metric: callable function that is used for comparison
|
|
metric_args: dict with additional arguments used for class initialization
|
|
"""
|
|
metric = partial(metric_functional, **metric_args)
|
|
|
|
for i in range(NUM_BATCHES):
|
|
lightning_result = metric(preds[i], target[i])
|
|
sk_result = sk_metric(preds[i], target[i])
|
|
|
|
# assert its the same
|
|
_assert_allclose(lightning_result, sk_result, atol=atol)
|
|
|
|
|
|
class MetricTester:
|
|
"""Class used for efficiently run alot of parametrized tests in ddp mode.
|
|
Makes sure that ddp is only setup once and that pool of processes are
|
|
used for all tests.
|
|
|
|
All tests should subclass from this and implement a new method called
|
|
`test_metric_name`
|
|
where the method `self.run_metric_test` is called inside.
|
|
"""
|
|
|
|
atol = 1e-8
|
|
|
|
def setup_class(self):
|
|
"""Setup the metric class. This will spawn the pool of workers that are
|
|
used for metric testing and setup_ddp
|
|
"""
|
|
|
|
self.poolSize = NUM_PROCESSES
|
|
self.pool = Pool(processes=self.poolSize)
|
|
self.pool.starmap(setup_ddp, [(rank, self.poolSize) for rank in range(self.poolSize)])
|
|
|
|
def teardown_class(self):
|
|
""" Close pool of workers """
|
|
self.pool.close()
|
|
self.pool.join()
|
|
|
|
def run_functional_metric_test(
|
|
self,
|
|
preds: torch.Tensor,
|
|
target: torch.Tensor,
|
|
metric_functional: Callable,
|
|
sk_metric: Callable,
|
|
metric_args: dict = {},
|
|
):
|
|
"""Main method that should be used for testing functions. Call this inside
|
|
testing method
|
|
|
|
Args:
|
|
preds: torch tensor with predictions
|
|
target: torch tensor with targets
|
|
metric_functional: lightning metric class that should be tested
|
|
sk_metric: callable function that is used for comparison
|
|
metric_args: dict with additional arguments used for class initialization
|
|
"""
|
|
_functional_test(
|
|
preds=preds,
|
|
target=target,
|
|
metric_functional=metric_functional,
|
|
sk_metric=sk_metric,
|
|
metric_args=metric_args,
|
|
atol=self.atol,
|
|
)
|
|
|
|
def run_class_metric_test(
|
|
self,
|
|
ddp: bool,
|
|
preds: torch.Tensor,
|
|
target: torch.Tensor,
|
|
metric_class: Metric,
|
|
sk_metric: Callable,
|
|
dist_sync_on_step: bool,
|
|
metric_args: dict = {},
|
|
check_dist_sync_on_step: bool = True,
|
|
check_batch: bool = True,
|
|
):
|
|
"""Main method that should be used for testing class. Call this inside testing
|
|
methods.
|
|
|
|
Args:
|
|
ddp: bool, if running in ddp mode or not
|
|
preds: torch tensor with predictions
|
|
target: torch tensor with targets
|
|
metric_class: lightning metric class that should be tested
|
|
sk_metric: callable function that is used for comparison
|
|
dist_sync_on_step: bool, if true will synchronize metric state across
|
|
processes at each ``forward()``
|
|
metric_args: dict with additional arguments used for class initialization
|
|
check_dist_sync_on_step: bool, if true will check if the metric is also correctly
|
|
calculated per batch per device (and not just at the end)
|
|
check_batch: bool, if true will check if the metric is also correctly
|
|
calculated across devices for each batch (and not just at the end)
|
|
"""
|
|
if ddp:
|
|
if sys.platform == "win32":
|
|
pytest.skip("DDP not supported on windows")
|
|
|
|
self.pool.starmap(
|
|
partial(
|
|
_class_test,
|
|
preds=preds,
|
|
target=target,
|
|
metric_class=metric_class,
|
|
sk_metric=sk_metric,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
metric_args=metric_args,
|
|
check_dist_sync_on_step=check_dist_sync_on_step,
|
|
check_batch=check_batch,
|
|
atol=self.atol,
|
|
),
|
|
[(rank, self.poolSize) for rank in range(self.poolSize)],
|
|
)
|
|
else:
|
|
_class_test(
|
|
0,
|
|
1,
|
|
preds=preds,
|
|
target=target,
|
|
metric_class=metric_class,
|
|
sk_metric=sk_metric,
|
|
dist_sync_on_step=dist_sync_on_step,
|
|
metric_args=metric_args,
|
|
check_dist_sync_on_step=check_dist_sync_on_step,
|
|
check_batch=check_batch,
|
|
atol=self.atol,
|
|
)
|