lightning/tests/core/test_results.py

186 lines
6.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
from pathlib import Path
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
import tests.helpers.utils as tutils
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.trainer.connectors.logger_connector.result import Result
from tests.helpers import BoringDataModule, BoringModel
from tests.helpers.runif import RunIf
def _setup_ddp(rank, worldsize):
import os
os.environ["MASTER_ADDR"] = "localhost"
# initialize the process group
dist.init_process_group("gloo", rank=rank, world_size=worldsize)
def _ddp_test_fn(rank, worldsize):
_setup_ddp(rank, worldsize)
tensor = torch.tensor([1.0])
actual = LightningModule._LightningModule__sync(tensor, sync_dist=True, sync_dist_op=torch.distributed.ReduceOp.SUM)
assert actual.item() == dist.get_world_size(), "Result-Log does not work properly with DDP and Tensors"
@RunIf(skip_windows=True)
def test_result_reduce_ddp():
"""Make sure result logging works with DDP"""
tutils.set_random_master_port()
worldsize = 2
mp.spawn(_ddp_test_fn, args=(worldsize, ), nprocs=worldsize)
@pytest.mark.parametrize(
"test_option,do_train,gpus", [
pytest.param(0, True, 0, id='full_loop'),
pytest.param(0, False, 0, id='test_only'),
pytest.param(
1, False, 0, id='test_only_mismatching_tensor', marks=pytest.mark.xfail(raises=ValueError, match="Mism.*")
),
pytest.param(2, False, 0, id='mix_of_tensor_dims'),
pytest.param(3, False, 0, id='string_list_predictions'),
pytest.param(4, False, 0, id='int_list_predictions'),
pytest.param(5, False, 0, id='nested_list_predictions'),
pytest.param(6, False, 0, id='dict_list_predictions'),
pytest.param(7, True, 0, id='write_dict_predictions'),
pytest.param(0, True, 1, id='full_loop_single_gpu', marks=RunIf(min_gpus=1))
]
)
def test_result_obj_predictions(tmpdir, test_option: int, do_train: bool, gpus: int):
class CustomBoringModel(BoringModel):
def test_step(self, batch, batch_idx, optimizer_idx=None):
output = self(batch)
test_loss = self.loss(batch, output)
self.log('test_loss', test_loss)
batch_size = batch.size(0)
lst_of_str = [random.choice(['dog', 'cat']) for i in range(batch_size)]
lst_of_int = [random.randint(500, 1000) for i in range(batch_size)]
lst_of_lst = [[x] for x in lst_of_int]
lst_of_dict = [{k: v} for k, v in zip(lst_of_str, lst_of_int)]
# This is passed in from pytest via parameterization
option = getattr(self, 'test_option', 0)
prediction_file = getattr(self, 'prediction_file', 'predictions.pt')
lazy_ids = torch.arange(batch_idx * batch_size, batch_idx * batch_size + batch_size)
# Base
if option == 0:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('preds', output, prediction_file)
# Check mismatching tensor len
elif option == 1:
self.write_prediction('idxs', torch.cat((lazy_ids, lazy_ids)), prediction_file)
self.write_prediction('preds', output, prediction_file)
# write multi-dimension
elif option == 2:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('preds', output, prediction_file)
self.write_prediction('x', batch, prediction_file)
# write str list
elif option == 3:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('vals', lst_of_str, prediction_file)
# write int list
elif option == 4:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('vals', lst_of_int, prediction_file)
# write nested list
elif option == 5:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('vals', lst_of_lst, prediction_file)
# write dict list
elif option == 6:
self.write_prediction('idxs', lazy_ids, prediction_file)
self.write_prediction('vals', lst_of_dict, prediction_file)
elif option == 7:
self.write_prediction_dict({'idxs': lazy_ids, 'preds': output}, prediction_file)
class CustomBoringDataModule(BoringDataModule):
def train_dataloader(self):
return DataLoader(self.random_train, batch_size=4)
def val_dataloader(self):
return DataLoader(self.random_val, batch_size=4)
def test_dataloader(self):
return DataLoader(self.random_test, batch_size=4)
tutils.reset_seed()
prediction_file = Path(tmpdir) / 'predictions.pt'
dm = BoringDataModule()
model = CustomBoringModel()
model.test_step_end = None
model.test_epoch_end = None
model.test_end = None
model.test_option = test_option
model.prediction_file = prediction_file.as_posix()
if prediction_file.exists():
prediction_file.unlink()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=3,
weights_summary=None,
deterministic=True,
gpus=gpus,
)
# Prediction file shouldn't exist yet because we haven't done anything
assert not prediction_file.exists()
if do_train:
trainer.fit(model, dm)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test(datamodule=dm)
else:
trainer.test(model, datamodule=dm)
# check prediction file now exists and is of expected length
assert prediction_file.exists()
predictions = torch.load(prediction_file)
assert len(predictions) == len(dm.random_test)
def test_result_retrieve_last_logged_item():
result = Result()
result.log('a', 5., on_step=True, on_epoch=True)
assert result['a_epoch'] == 5.
assert result['a_step'] == 5.
assert result['a'] == 5.