552 lines
18 KiB
Python
552 lines
18 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License
|
|
|
|
import os
|
|
from typing import Optional
|
|
from unittest import mock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.accelerators.cpu import CPUAccelerator
|
|
from pytorch_lightning.accelerators.gpu import GPUAccelerator
|
|
from pytorch_lightning.callbacks import Callback
|
|
from pytorch_lightning.plugins import (
|
|
DDP2Plugin,
|
|
DDPPlugin,
|
|
DDPShardedPlugin,
|
|
DDPSpawnPlugin,
|
|
DDPSpawnShardedPlugin,
|
|
DeepSpeedPlugin,
|
|
ParallelPlugin,
|
|
PrecisionPlugin,
|
|
SingleDevicePlugin,
|
|
)
|
|
from pytorch_lightning.plugins.environments import (
|
|
KubeflowEnvironment,
|
|
LightningEnvironment,
|
|
SLURMEnvironment,
|
|
TorchElasticEnvironment,
|
|
)
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
def test_accelerator_choice_cpu(tmpdir):
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
fast_dev_run=True,
|
|
)
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, SingleDevicePlugin)
|
|
|
|
|
|
def test_accelerator_choice_ddp_cpu(tmpdir):
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
)
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPSpawnPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@mock.patch('torch.cuda.is_available', return_value=True)
|
|
def test_accelerator_choice_ddp(cuda_available_mock, device_count_mock):
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp',
|
|
gpus=1,
|
|
)
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"CUDA_VISIBLE_DEVICES": "0,1"})
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@mock.patch('torch.cuda.is_available', return_value=True)
|
|
def test_accelerator_choice_ddp_spawn(cuda_available_mock, device_count_mock):
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_spawn',
|
|
gpus=1,
|
|
)
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPSpawnPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, LightningEnvironment)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"SLURM_PROCID": "1",
|
|
"SLURM_LOCALID": "1",
|
|
}
|
|
)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_slurm(setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert trainer.accelerator_connector.is_slurm_managing_tasks
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
|
|
assert trainer.training_type_plugin.task_idx == 1
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp',
|
|
gpus=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"SLURM_PROCID": "1",
|
|
"SLURM_LOCALID": "1"
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp2_slurm(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert trainer.accelerator_connector.is_slurm_managing_tasks
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDP2Plugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
|
|
assert trainer.training_type_plugin.task_idx == 1
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp2',
|
|
gpus=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"WORLD_SIZE": "2",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
"RANK": "1",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_te(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
|
|
assert trainer.training_type_plugin.task_idx == 1
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp',
|
|
gpus=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0,1",
|
|
"WORLD_SIZE": "2",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
"RANK": "1",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp2_te(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDP2Plugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
|
|
assert trainer.training_type_plugin.task_idx == 1
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp2',
|
|
gpus=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"WORLD_SIZE": "2",
|
|
"LOCAL_WORLD_SIZE": "2",
|
|
"RANK": "1",
|
|
"LOCAL_RANK": "1",
|
|
"GROUP_RANK": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_cpu_te(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, TorchElasticEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 1
|
|
assert trainer.training_type_plugin.task_idx == 1
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
num_processes=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=1)
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"CUDA_VISIBLE_DEVICES": "0",
|
|
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
|
|
"MASTER_ADDR": "1.2.3.4",
|
|
"MASTER_PORT": "500",
|
|
"WORLD_SIZE": "20",
|
|
"RANK": "1",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=1)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_kubeflow(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, GPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, KubeflowEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 0
|
|
assert trainer.training_type_plugin.task_idx == 0
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp',
|
|
gpus=1,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"KUBERNETES_PORT": "tcp://127.0.0.1:443",
|
|
"MASTER_ADDR": "1.2.3.4",
|
|
"MASTER_PORT": "500",
|
|
"WORLD_SIZE": "20",
|
|
"RANK": "1",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_cpu_kubeflow(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, KubeflowEnvironment)
|
|
assert trainer.training_type_plugin.cluster_environment.local_rank() == 0
|
|
assert trainer.training_type_plugin.task_idx == 0
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
num_processes=1,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_cpu_slurm(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert trainer.accelerator_connector.is_slurm_managing_tasks
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, SLURMEnvironment)
|
|
assert trainer.training_type_plugin.task_idx == 0
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
num_processes=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_accelerator_choice_ddp_cpu_custom_cluster(device_count_mock, setup_distributed_mock):
|
|
"""
|
|
Test that we choose the custom cluster even when SLURM or TE flags are around
|
|
"""
|
|
|
|
class CustomCluster(LightningEnvironment):
|
|
|
|
def master_address(self):
|
|
return 'asdf'
|
|
|
|
def creates_children(self) -> bool:
|
|
return True
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert isinstance(trainer.training_type_plugin.cluster_environment, CustomCluster)
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
plugins=[CustomCluster()],
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
num_processes=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_LOCALID": "0"
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_custom_accelerator(device_count_mock, setup_distributed_mock):
|
|
|
|
class Accel(Accelerator):
|
|
pass
|
|
|
|
class Prec(PrecisionPlugin):
|
|
pass
|
|
|
|
class TrainTypePlugin(SingleDevicePlugin):
|
|
pass
|
|
|
|
accelerator = Accel(
|
|
training_type_plugin=TrainTypePlugin(device=torch.device("cpu")),
|
|
precision_plugin=Prec(),
|
|
)
|
|
trainer = Trainer(
|
|
accelerator=accelerator,
|
|
fast_dev_run=True,
|
|
num_processes=2,
|
|
)
|
|
assert isinstance(trainer.accelerator, Accel)
|
|
assert isinstance(trainer.training_type_plugin, TrainTypePlugin)
|
|
assert isinstance(trainer.precision_plugin, Prec)
|
|
|
|
|
|
@mock.patch.dict(
|
|
os.environ, {
|
|
"SLURM_NTASKS": "2",
|
|
"SLURM_JOB_NAME": "SOME_NAME",
|
|
"SLURM_NODEID": "0",
|
|
"LOCAL_RANK": "0",
|
|
"SLURM_PROCID": "0",
|
|
"SLURM_LOCALID": "0",
|
|
}
|
|
)
|
|
@mock.patch('torch.cuda.device_count', return_value=0)
|
|
@mock.patch('pytorch_lightning.plugins.DDPPlugin.setup_distributed', autospec=True)
|
|
def test_dist_backend_accelerator_mapping(device_count_mock, setup_distributed_mock):
|
|
|
|
class CB(Callback):
|
|
|
|
def on_fit_start(self, trainer, pl_module):
|
|
assert isinstance(trainer.accelerator, CPUAccelerator)
|
|
assert isinstance(trainer.training_type_plugin, DDPPlugin)
|
|
assert trainer.training_type_plugin.task_idx == 0
|
|
raise SystemExit()
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
fast_dev_run=True,
|
|
accelerator='ddp_cpu',
|
|
num_processes=2,
|
|
callbacks=[CB()],
|
|
)
|
|
|
|
with pytest.raises(SystemExit):
|
|
trainer.fit(model)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.utilities._IS_INTERACTIVE", return_value=True)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
def test_ipython_incompatible_backend_error(*_):
|
|
with pytest.raises(MisconfigurationException, match="backend ddp is not compatible"):
|
|
Trainer(accelerator="ddp", gpus=2)
|
|
|
|
with pytest.raises(MisconfigurationException, match="backend ddp2 is not compatible"):
|
|
Trainer(accelerator="ddp2", gpus=2)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.utilities._IS_INTERACTIVE", return_value=True)
|
|
def test_ipython_compatible_backend(*_):
|
|
Trainer(accelerator="ddp_cpu", num_processes=2)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
["accelerator", "plugin"],
|
|
[('ddp_spawn', 'ddp_sharded'), (None, 'ddp_sharded')],
|
|
)
|
|
def test_plugin_accelerator_choice(accelerator: Optional[str], plugin: str):
|
|
"""Ensure that when a plugin and accelerator is passed in, that the plugin takes precedent."""
|
|
trainer = Trainer(accelerator=accelerator, plugins=plugin, num_processes=2)
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
|
|
|
|
trainer = Trainer(plugins=plugin, num_processes=2)
|
|
assert isinstance(trainer.accelerator.training_type_plugin, DDPShardedPlugin)
|
|
|
|
|
|
@pytest.mark.parametrize(["accelerator", "plugin"], [
|
|
('ddp', DDPPlugin),
|
|
('ddp_spawn', DDPSpawnPlugin),
|
|
('ddp_sharded', DDPShardedPlugin),
|
|
('ddp_sharded_spawn', DDPSpawnShardedPlugin),
|
|
pytest.param('deepspeed', DeepSpeedPlugin, marks=RunIf(deepspeed=True)),
|
|
])
|
|
@mock.patch('torch.cuda.is_available', return_value=True)
|
|
@mock.patch('torch.cuda.device_count', return_value=2)
|
|
@pytest.mark.parametrize("gpus", [1, 2])
|
|
def test_accelerator_choice_multi_node_gpu(
|
|
mock_is_available, mock_device_count, tmpdir, accelerator: str, plugin: ParallelPlugin, gpus: int
|
|
):
|
|
trainer = Trainer(
|
|
accelerator=accelerator,
|
|
default_root_dir=tmpdir,
|
|
num_nodes=2,
|
|
gpus=gpus,
|
|
)
|
|
assert isinstance(trainer.training_type_plugin, plugin)
|