lightning/dockers
Jirka Borovec 1e4bc69a16
Ban `tensorboard==2.5.0` and `deepspeed==0.3.15` (#7159)
* ban TB 2.5

* note

* push

* Ban tb==2.5.0 and deepspeed==0.3.15

* Fix pip command

* pull

* up

* up

Co-authored-by: Carlos Mocholi <carlossmocholi@gmail.com>
2021-04-22 11:08:21 -04:00
..
base-conda Fix `apex` version in Docker due to broken upstream (#7146) 2021-04-21 23:58:55 +01:00
base-cuda Ban `tensorboard==2.5.0` and `deepspeed==0.3.15` (#7159) 2021-04-22 11:08:21 -04:00
base-xla require: adjust versions (#6363) 2021-03-06 14:34:54 +01:00
nvidia update docker base on PT 1.7 (#6931) 2021-04-13 10:06:06 +01:00
release remake nvidia docker (#6686) 2021-03-29 09:39:06 +01:00
tpu-tests
README.md

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.8-pt1.6 \
    -f dockers/base-cuda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.6 \
    .

or nightly version from Coda

git clone <git-repository>
docker image build \
    -t pytorch-lightning:py3.7-pt1.8 \
    -f dockers/base-conda/Dockerfile \
    --build-arg PYTHON_VERSION=3.7 \
    --build-arg PYTORCH_VERSION=1.8 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6