36 lines
1.3 KiB
Python
36 lines
1.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Union, cast
|
|
|
|
from torch.optim import Optimizer
|
|
|
|
from pytorch_lightning.plugins.native_amp import NativeAMPPlugin
|
|
from pytorch_lightning.utilities import _FAIRSCALE_AVAILABLE, _NATIVE_AMP_AVAILABLE
|
|
|
|
if _NATIVE_AMP_AVAILABLE and _FAIRSCALE_AVAILABLE:
|
|
from fairscale.optim import OSS
|
|
from fairscale.optim.grad_scaler import ShardedGradScaler
|
|
|
|
|
|
class ShardedNativeAMPPlugin(NativeAMPPlugin):
|
|
@property
|
|
def scaler(self):
|
|
return ShardedGradScaler()
|
|
|
|
def clip_gradients(self, grad_clip_val: Union[int, float], optimizer: Optimizer, norm_type: float):
|
|
max_norm = grad_clip_val
|
|
norm_type = float(2.0)
|
|
optimizer = cast(OSS, optimizer)
|
|
optimizer.clip_grad_norm(max_norm, norm_type=norm_type)
|