202 lines
6.1 KiB
Python
202 lines
6.1 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
Tests to ensure that the training loop works with a dict (1.0)
|
|
"""
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from tests.helpers.deterministic_model import DeterministicModel
|
|
|
|
|
|
def test__training_step__flow_dict(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
|
|
class TestModel(DeterministicModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
self.training_step_called = True
|
|
return {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert not model.training_step_end_called
|
|
assert not model.training_epoch_end_called
|
|
|
|
|
|
def test__training_step__tr_step_end__flow_dict(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
|
|
class TestModel(DeterministicModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
self.training_step_called = True
|
|
self.out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
|
|
return self.out
|
|
|
|
def training_step_end(self, tr_step_output):
|
|
assert tr_step_output == self.out
|
|
assert self.count_num_graphs(tr_step_output) == 1
|
|
self.training_step_end_called = True
|
|
return tr_step_output
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert model.training_step_end_called
|
|
assert not model.training_epoch_end_called
|
|
|
|
|
|
def test__training_step__epoch_end__flow_dict(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
|
|
class TestModel(DeterministicModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
|
|
self.training_step_called = True
|
|
out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
|
|
return out
|
|
|
|
def training_epoch_end(self, outputs):
|
|
self.training_epoch_end_called = True
|
|
|
|
# verify we saw the current num of batches
|
|
assert len(outputs) == 2
|
|
|
|
for b in outputs:
|
|
assert isinstance(b, dict)
|
|
assert self.count_num_graphs(b) == 0
|
|
assert {'random_things', 'loss'} == set(b.keys())
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert not model.training_step_end_called
|
|
assert model.training_epoch_end_called
|
|
|
|
|
|
def test__training_step__step_end__epoch_end__flow_dict(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
|
|
class TestModel(DeterministicModel):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
acc = self.step(batch, batch_idx)
|
|
acc = acc + batch_idx
|
|
|
|
self.training_step_called = True
|
|
self.out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
|
|
return self.out
|
|
|
|
def training_step_end(self, tr_step_output):
|
|
assert tr_step_output == self.out
|
|
assert self.count_num_graphs(tr_step_output) == 1
|
|
self.training_step_end_called = True
|
|
return tr_step_output
|
|
|
|
def training_epoch_end(self, outputs):
|
|
self.training_epoch_end_called = True
|
|
|
|
# verify we saw the current num of batches
|
|
assert len(outputs) == 2
|
|
|
|
for b in outputs:
|
|
assert isinstance(b, dict)
|
|
assert self.count_num_graphs(b) == 0
|
|
assert {'random_things', 'loss'} == set(b.keys())
|
|
|
|
def backward(self, loss, optimizer, optimizer_idx):
|
|
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
|
|
|
|
model = TestModel()
|
|
model.val_dataloader = None
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=2,
|
|
limit_val_batches=2,
|
|
max_epochs=2,
|
|
log_every_n_steps=1,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
# make sure correct steps were called
|
|
assert model.training_step_called
|
|
assert model.training_step_end_called
|
|
assert model.training_epoch_end_called
|