lightning/tests/trainer/loops/test_training_loop_flow_dic...

202 lines
6.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Tests to ensure that the training loop works with a dict (1.0)
"""
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.core.lightning import LightningModule
from tests.helpers.deterministic_model import DeterministicModel
def test__training_step__flow_dict(tmpdir):
"""
Tests that only training_step can be used
"""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
return {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
def backward(self, loss, optimizer, optimizer_idx):
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert not model.training_step_end_called
assert not model.training_epoch_end_called
def test__training_step__tr_step_end__flow_dict(tmpdir):
"""
Tests that only training_step can be used
"""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
self.out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
return self.out
def training_step_end(self, tr_step_output):
assert tr_step_output == self.out
assert self.count_num_graphs(tr_step_output) == 1
self.training_step_end_called = True
return tr_step_output
def backward(self, loss, optimizer, optimizer_idx):
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert model.training_step_end_called
assert not model.training_epoch_end_called
def test__training_step__epoch_end__flow_dict(tmpdir):
"""
Tests that only training_step can be used
"""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
return out
def training_epoch_end(self, outputs):
self.training_epoch_end_called = True
# verify we saw the current num of batches
assert len(outputs) == 2
for b in outputs:
assert isinstance(b, dict)
assert self.count_num_graphs(b) == 0
assert {'random_things', 'loss'} == set(b.keys())
def backward(self, loss, optimizer, optimizer_idx):
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert not model.training_step_end_called
assert model.training_epoch_end_called
def test__training_step__step_end__epoch_end__flow_dict(tmpdir):
"""
Tests that only training_step can be used
"""
class TestModel(DeterministicModel):
def training_step(self, batch, batch_idx):
acc = self.step(batch, batch_idx)
acc = acc + batch_idx
self.training_step_called = True
self.out = {'loss': acc, 'random_things': [1, 'a', torch.tensor(2)]}
return self.out
def training_step_end(self, tr_step_output):
assert tr_step_output == self.out
assert self.count_num_graphs(tr_step_output) == 1
self.training_step_end_called = True
return tr_step_output
def training_epoch_end(self, outputs):
self.training_epoch_end_called = True
# verify we saw the current num of batches
assert len(outputs) == 2
for b in outputs:
assert isinstance(b, dict)
assert self.count_num_graphs(b) == 0
assert {'random_things', 'loss'} == set(b.keys())
def backward(self, loss, optimizer, optimizer_idx):
return LightningModule.backward(self, loss, optimizer, optimizer_idx)
model = TestModel()
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=2,
log_every_n_steps=1,
weights_summary=None,
)
trainer.fit(model)
# make sure correct steps were called
assert model.training_step_called
assert model.training_step_end_called
assert model.training_epoch_end_called