lightning/tests/trainer/loops/test_training_loop.py

188 lines
5.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import pytest
import torch
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.helpers import BoringModel
def test_outputs_format(tmpdir):
"""Tests that outputs objects passed to model hooks and methods are consistent and in the correct format."""
class HookedModel(BoringModel):
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
self.log("foo", 123)
output["foo"] = 123
return output
@staticmethod
def _check_output(output):
assert "loss" in output
assert "foo" in output
assert output["foo"] == 123
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
HookedModel._check_output(outputs)
super().on_train_batch_end(outputs, batch, batch_idx, dataloader_idx)
def training_epoch_end(self, outputs):
assert len(outputs) == 2
[HookedModel._check_output(output) for output in outputs]
super().training_epoch_end(outputs)
model = HookedModel()
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_val_batches=1,
limit_train_batches=2,
limit_test_batches=1,
progress_bar_refresh_rate=0,
weights_summary=None,
)
trainer.fit(model)
def test_training_starts_with_seed(tmpdir):
""" Test that the training always starts with the same random state (when using seed_everything). """
class SeededModel(BoringModel):
def __init__(self):
super().__init__()
self.seen_batches = []
def training_step(self, batch, batch_idx):
self.seen_batches.append(batch.view(-1))
return super().training_step(batch, batch_idx)
def run_training(**trainer_kwargs):
model = SeededModel()
seed_everything(123)
trainer = Trainer(**trainer_kwargs)
trainer.fit(model)
return torch.cat(model.seen_batches)
sequence0 = run_training(
default_root_dir=tmpdir,
max_steps=2,
num_sanity_val_steps=0,
)
sequence1 = run_training(
default_root_dir=tmpdir,
max_steps=2,
num_sanity_val_steps=2,
)
assert torch.allclose(sequence0, sequence1)
@pytest.mark.parametrize(['max_epochs', 'batch_idx_'], [(2, 5), (3, 8), (4, 12)])
def test_on_train_batch_start_return_minus_one(max_epochs, batch_idx_):
class CurrentModel(BoringModel):
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
if batch_idx == batch_idx_:
return -1
model = CurrentModel()
trainer = Trainer(max_epochs=max_epochs, limit_train_batches=10)
trainer.fit(model)
if batch_idx_ > trainer.num_training_batches - 1:
assert trainer.train_loop.batch_idx == trainer.num_training_batches - 1
assert trainer.global_step == trainer.num_training_batches * max_epochs
else:
assert trainer.train_loop.batch_idx == batch_idx_
assert trainer.global_step == batch_idx_ * max_epochs
def test_should_stop_mid_epoch(tmpdir):
"""Test that training correctly stops mid epoch and that validation is still called at the right time"""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.validation_called_at = None
def training_step(self, batch, batch_idx):
if batch_idx == 4:
self.trainer.should_stop = True
return super().training_step(batch, batch_idx)
def validation_step(self, *args):
self.validation_called_at = (self.trainer.current_epoch, self.trainer.global_step)
return super().validation_step(*args)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=1,
)
trainer.fit(model)
assert trainer.current_epoch == 0
assert trainer.global_step == 5
assert model.validation_called_at == (0, 4)
@pytest.mark.parametrize(['output'], [(5., ), ({'a': 5}, )])
def test_warning_invalid_trainstep_output(tmpdir, output):
class InvalidTrainStepModel(BoringModel):
def training_step(self, batch, batch_idx):
return output
model = InvalidTrainStepModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1)
with pytest.raises(
MisconfigurationException,
match=re.escape(
"In automatic optimization, `training_step` must either return a Tensor, "
"a dict with key 'loss' or None (where the step will be skipped)."
)
):
trainer.fit(model)
def test_warning_valid_train_step_end(tmpdir):
class ValidTrainStepEndModel(BoringModel):
def training_step(self, batch, batch_idx):
output = self(batch)
return {'output': output, 'batch': batch}
def training_step_end(self, outputs):
loss = self.loss(outputs['batch'], outputs['output'])
return loss
# No error is raised
model = ValidTrainStepEndModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=1)
trainer.fit(model)