lightning/examples/fabric/meta_learning/train_torch.py

182 lines
5.8 KiB
Python

"""
MAML - Raw PyTorch implementation using the Learn2Learn library
Adapted from https://github.com/learnables/learn2learn/blob/master/examples/vision/distributed_maml.py
Original code author: Séb Arnold - learnables.net
Based on the paper: https://arxiv.org/abs/1703.03400
Requirements:
- learn2learn
- cherry-rl
- gym<=0.22
This code is written for distributed training.
Run it with:
torchrun --nproc_per_node=2 --standalone train_torch.py
"""
import os
import random
import cherry
import learn2learn as l2l
import torch
import torch.distributed as dist
def accuracy(predictions, targets):
predictions = predictions.argmax(dim=1).view(targets.shape)
return (predictions == targets).sum().float() / targets.size(0)
def fast_adapt(batch, learner, loss, adaptation_steps, shots, ways, device):
data, labels = batch
data, labels = data.to(device), labels.to(device)
# Separate data into adaptation/evalutation sets
adaptation_indices = torch.zeros(data.size(0), dtype=bool)
adaptation_indices[torch.arange(shots * ways) * 2] = True
evaluation_indices = ~adaptation_indices
adaptation_data, adaptation_labels = data[adaptation_indices], labels[adaptation_indices]
evaluation_data, evaluation_labels = data[evaluation_indices], labels[evaluation_indices]
# Adapt the model
for step in range(adaptation_steps):
train_error = loss(learner(adaptation_data), adaptation_labels)
learner.adapt(train_error)
# Evaluate the adapted model
predictions = learner(evaluation_data)
valid_error = loss(predictions, evaluation_labels)
valid_accuracy = accuracy(predictions, evaluation_labels)
return valid_error, valid_accuracy
def main(
ways=5,
shots=5,
meta_lr=0.003,
fast_lr=0.5,
meta_batch_size=32,
adaptation_steps=1,
num_iterations=60000,
cuda=True,
seed=42,
):
local_rank = int(os.environ["LOCAL_RANK"])
world_size = int(os.environ["WORLD_SIZE"])
os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12345"
dist.init_process_group("gloo", rank=local_rank, world_size=world_size)
rank = dist.get_rank()
meta_batch_size = meta_batch_size // world_size
seed = seed + rank
random.seed(seed)
torch.manual_seed(seed)
device = torch.device("cpu")
if cuda and torch.cuda.device_count():
torch.cuda.manual_seed(seed)
device_id = rank % torch.cuda.device_count()
device = torch.device("cuda:" + str(device_id))
# Create Tasksets using the benchmark interface
tasksets = l2l.vision.benchmarks.get_tasksets(
# 'mini-imagenet' works too, but you need to download it manually due to license restrictions of ImageNet
"omniglot",
train_ways=ways,
train_samples=2 * shots,
test_ways=ways,
test_samples=2 * shots,
num_tasks=20000,
root="data",
)
# Create model
# model = l2l.vision.models.MiniImagenetCNN(ways)
model = l2l.vision.models.OmniglotFC(28**2, ways)
model.to(device)
maml = l2l.algorithms.MAML(model, lr=fast_lr, first_order=False)
optimizer = torch.optim.Adam(maml.parameters(), meta_lr)
optimizer = cherry.optim.Distributed(maml.parameters(), opt=optimizer, sync=1)
optimizer.sync_parameters()
loss = torch.nn.CrossEntropyLoss(reduction="mean")
for iteration in range(num_iterations):
optimizer.zero_grad()
meta_train_error = 0.0
meta_train_accuracy = 0.0
meta_valid_error = 0.0
meta_valid_accuracy = 0.0
for task in range(meta_batch_size):
# Compute meta-training loss
learner = maml.clone()
batch = tasksets.train.sample()
evaluation_error, evaluation_accuracy = fast_adapt(
batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device,
)
evaluation_error.backward()
meta_train_error += evaluation_error.item()
meta_train_accuracy += evaluation_accuracy.item()
# Compute meta-validation loss
learner = maml.clone()
batch = tasksets.validation.sample()
evaluation_error, evaluation_accuracy = fast_adapt(
batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device,
)
meta_valid_error += evaluation_error.item()
meta_valid_accuracy += evaluation_accuracy.item()
# Print some metrics
if rank == 0:
print("\n")
print("Iteration", iteration)
print("Meta Train Error", meta_train_error / meta_batch_size)
print("Meta Train Accuracy", meta_train_accuracy / meta_batch_size)
print("Meta Valid Error", meta_valid_error / meta_batch_size)
print("Meta Valid Accuracy", meta_valid_accuracy / meta_batch_size)
# Average the accumulated gradients and optimize
for p in maml.parameters():
p.grad.data.mul_(1.0 / meta_batch_size)
optimizer.step() # averages gradients across all workers
meta_test_error = 0.0
meta_test_accuracy = 0.0
for task in range(meta_batch_size):
# Compute meta-testing loss
learner = maml.clone()
batch = tasksets.test.sample()
evaluation_error, evaluation_accuracy = fast_adapt(
batch,
learner,
loss,
adaptation_steps,
shots,
ways,
device,
)
meta_test_error += evaluation_error.item()
meta_test_accuracy += evaluation_accuracy.item()
print("Meta Test Error", meta_test_error / meta_batch_size)
print("Meta Test Accuracy", meta_test_accuracy / meta_batch_size)
if __name__ == "__main__":
main()