lightning/tests/tuner/test_scale_batch_size.py

66 lines
2.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.tuner.tuning import Tuner
from tests.helpers import BoringDataModule, BoringModel
class BatchSizeDataModule(BoringDataModule):
def __init__(self, batch_size=None):
super().__init__()
if batch_size is not None:
self.batch_size = batch_size
def train_dataloader(self):
return DataLoader(self.random_train, batch_size=getattr(self, "batch_size", 1))
class BatchSizeModel(BoringModel):
def __init__(self, batch_size=None):
super().__init__()
if batch_size is not None:
self.batch_size = batch_size
@pytest.mark.parametrize(
"model,datamodule", [
(BatchSizeModel(2), None),
(BatchSizeModel(2), BatchSizeDataModule(2)),
(BatchSizeModel(2), BatchSizeDataModule(None)),
(BatchSizeModel(None), BatchSizeDataModule(2)),
]
)
def test_scale_batch_size_method_with_model_or_datamodule(tmpdir, model, datamodule):
""" Test the tuner method `Tuner.scale_batch_size` with a datamodule. """
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=1,
limit_val_batches=0,
max_epochs=1,
)
tuner = Tuner(trainer)
new_batch_size = tuner.scale_batch_size(
model=model, mode="binsearch", init_val=4, max_trials=2, datamodule=datamodule
)
assert new_batch_size == 16
if hasattr(model, "batch_size"):
assert model.batch_size == 16
if datamodule is not None and hasattr(datamodule, "batch_size"):
assert datamodule.batch_size == 16