lightning/pytorch_lightning/loggers/__init__.py

151 lines
4.5 KiB
Python

"""
Lightning supports the most popular logging frameworks (TensorBoard, Comet, Weights and Biases, etc...).
To use a logger, simply pass it into the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
Lightning uses TensorBoard by default.
.. code-block:: python
from pytorch_lightning import Trainer
from pytorch_lightning import loggers
tb_logger = loggers.TensorBoardLogger('logs/')
trainer = Trainer(logger=tb_logger)
Choose from any of the others such as MLflow, Comet, Neptune, WandB, ...
.. code-block:: python
comet_logger = loggers.CometLogger(save_dir='logs/')
trainer = Trainer(logger=comet_logger)
To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers ...
.. code-block:: python
tb_logger = loggers.TensorBoardLogger('logs/')
comet_logger = loggers.CometLogger(save_dir='logs/')
trainer = Trainer(logger=[tb_logger, comet_logger])
Note:
All loggers log by default to ``os.getcwd()``. To change the path without creating a logger set
``Trainer(default_root_dir='/your/path/to/save/checkpoints')``
Custom Logger
-------------
You can implement your own logger by writing a class that inherits from
:class:`LightningLoggerBase`. Use the :func:`~pytorch_lightning.loggers.base.rank_zero_only`
decorator to make sure that only the first process in DDP training logs data.
.. code-block:: python
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import LightningLoggerBase
class MyLogger(LightningLoggerBase):
@rank_zero_only
def log_hyperparams(self, params):
# params is an argparse.Namespace
# your code to record hyperparameters goes here
pass
@rank_zero_only
def log_metrics(self, metrics, step):
# metrics is a dictionary of metric names and values
# your code to record metrics goes here
pass
def save(self):
# Optional. Any code necessary to save logger data goes here
pass
@rank_zero_only
def finalize(self, status):
# Optional. Any code that needs to be run after training
# finishes goes here
pass
If you write a logger that may be useful to others, please send
a pull request to add it to Lighting!
Using loggers
-------------
Call the logger anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule` by doing:
.. code-block:: python
from pytorch_lightning import LightningModule
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_method_summary_writer_supports(...)
# example if logger is a tensorboard logger
self.logger.experiment.add_image('images', grid, 0)
self.logger.experiment.add_graph(model, images)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.add_histogram(...)
Read more in the `Experiment Logging use case <./experiment_logging.html>`_.
Supported Loggers
-----------------
"""
from os import environ
from pytorch_lightning.loggers.base import LightningLoggerBase, LoggerCollection
from pytorch_lightning.loggers.tensorboard import TensorBoardLogger
__all__ = [
'LightningLoggerBase',
'LoggerCollection',
'TensorBoardLogger',
]
try:
# needed to prevent ImportError and duplicated logs.
environ["COMET_DISABLE_AUTO_LOGGING"] = "1"
from pytorch_lightning.loggers.comet import CometLogger
except ImportError: # pragma: no-cover
del environ["COMET_DISABLE_AUTO_LOGGING"] # pragma: no-cover
else:
__all__.append('CometLogger')
try:
from pytorch_lightning.loggers.mlflow import MLFlowLogger
except ImportError: # pragma: no-cover
pass # pragma: no-cover
else:
__all__.append('MLFlowLogger')
try:
from pytorch_lightning.loggers.neptune import NeptuneLogger
except ImportError: # pragma: no-cover
pass # pragma: no-cover
else:
__all__.append('NeptuneLogger')
try:
from pytorch_lightning.loggers.test_tube import TestTubeLogger
except ImportError: # pragma: no-cover
pass # pragma: no-cover
else:
__all__.append('TestTubeLogger')
try:
from pytorch_lightning.loggers.wandb import WandbLogger
except ImportError: # pragma: no-cover
pass # pragma: no-cover
else:
__all__.append('WandbLogger')
try:
from pytorch_lightning.loggers.trains import TrainsLogger
except ImportError: # pragma: no-cover
pass # pragma: no-cover
else:
__all__.append('TrainsLogger')