lightning/tests/callbacks/test_rich_progress_bar.py

144 lines
4.7 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest import mock
from unittest.mock import DEFAULT
import pytest
from torch.utils.data import DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ProgressBarBase, RichProgressBar
from pytorch_lightning.callbacks.progress.rich_progress import RichProgressBarTheme
from pytorch_lightning.utilities.imports import _RICH_AVAILABLE
from tests.helpers.boring_model import BoringModel, RandomDataset, RandomIterableDataset
from tests.helpers.runif import RunIf
@RunIf(rich=True)
def test_rich_progress_bar_callback():
trainer = Trainer(callbacks=RichProgressBar())
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
assert len(progress_bars) == 1
assert isinstance(trainer.progress_bar_callback, RichProgressBar)
@RunIf(rich=True)
def test_rich_progress_bar_refresh_rate():
progress_bar = RichProgressBar(refresh_rate_per_second=1)
assert progress_bar.is_enabled
assert not progress_bar.is_disabled
progress_bar = RichProgressBar(refresh_rate_per_second=0)
assert not progress_bar.is_enabled
assert progress_bar.is_disabled
@RunIf(rich=True)
@mock.patch("pytorch_lightning.callbacks.progress.rich_progress.Progress.update")
@pytest.mark.parametrize("dataset", [RandomDataset(32, 64), RandomIterableDataset(32, 64)])
def test_rich_progress_bar(progress_update, tmpdir, dataset):
class TestModel(BoringModel):
def train_dataloader(self):
return DataLoader(dataset=dataset)
def val_dataloader(self):
return DataLoader(dataset=dataset)
def test_dataloader(self):
return DataLoader(dataset=dataset)
def predict_dataloader(self):
return DataLoader(dataset=dataset)
model = TestModel()
trainer = Trainer(
default_root_dir=tmpdir,
num_sanity_val_steps=0,
limit_train_batches=1,
limit_val_batches=1,
limit_test_batches=1,
limit_predict_batches=1,
max_steps=1,
callbacks=RichProgressBar(),
)
trainer.fit(model)
trainer.validate(model)
trainer.test(model)
trainer.predict(model)
assert progress_update.call_count == 8
def test_rich_progress_bar_import_error():
if not _RICH_AVAILABLE:
with pytest.raises(ImportError, match="`RichProgressBar` requires `rich` to be installed."):
Trainer(callbacks=RichProgressBar())
@RunIf(rich=True)
def test_rich_progress_bar_custom_theme(tmpdir):
"""Test to ensure that custom theme styles are used."""
with mock.patch.multiple(
"pytorch_lightning.callbacks.progress.rich_progress",
CustomBarColumn=DEFAULT,
BatchesProcessedColumn=DEFAULT,
CustomTimeColumn=DEFAULT,
ProcessingSpeedColumn=DEFAULT,
) as mocks:
theme = RichProgressBarTheme()
progress_bar = RichProgressBar(theme=theme)
progress_bar.on_train_start(Trainer(tmpdir), BoringModel())
assert progress_bar.theme == theme
args, kwargs = mocks["CustomBarColumn"].call_args
assert kwargs["complete_style"] == theme.progress_bar_complete
assert kwargs["finished_style"] == theme.progress_bar_finished
args, kwargs = mocks["BatchesProcessedColumn"].call_args
assert kwargs["style"] == theme.batch_process
args, kwargs = mocks["CustomTimeColumn"].call_args
assert kwargs["style"] == theme.time
args, kwargs = mocks["ProcessingSpeedColumn"].call_args
assert kwargs["style"] == theme.processing_speed
@RunIf(rich=True)
def test_rich_progress_bar_keyboard_interrupt(tmpdir):
"""Test to ensure that when the user keyboard interrupts, we close the progress bar."""
class TestModel(BoringModel):
def on_train_start(self) -> None:
raise KeyboardInterrupt
model = TestModel()
with mock.patch(
"pytorch_lightning.callbacks.progress.rich_progress.Progress.stop", autospec=True
) as mock_progress_stop:
progress_bar = RichProgressBar()
trainer = Trainer(
default_root_dir=tmpdir,
fast_dev_run=True,
callbacks=progress_bar,
)
trainer.fit(model)
mock_progress_stop.assert_called_once()