lightning/tests/tests_pytorch/models/test_cpu.py

319 lines
9.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from unittest import mock
import torch
import tests_pytorch.helpers.pipelines as tpipes
import tests_pytorch.helpers.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import Callback, EarlyStopping, ModelCheckpoint
from pytorch_lightning.demos.boring_classes import BoringModel
from tests_pytorch.helpers.datamodules import ClassifDataModule
from tests_pytorch.helpers.runif import RunIf
from tests_pytorch.helpers.simple_models import ClassificationModel
@mock.patch("lightning_lite.plugins.environments.slurm.SLURMEnvironment.detect", return_value=True)
def test_cpu_slurm_save_load(_, tmpdir):
"""Verify model save/load/checkpoint on CPU."""
model = BoringModel()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
version = logger.version
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
limit_train_batches=0.2,
limit_val_batches=0.2,
callbacks=[ModelCheckpoint(dirpath=tmpdir)],
)
trainer.fit(model)
real_global_step = trainer.global_step
# traning complete
assert trainer.state.finished, "cpu model failed to complete"
# predict with trained model before saving
# make a prediction
dataloaders = model.test_dataloader()
if not isinstance(dataloaders, list):
dataloaders = [dataloaders]
for dataloader in dataloaders:
for batch in dataloader:
break
model.eval()
pred_before_saving = model(batch)
# test HPC saving
# simulate snapshot on slurm
# save logger to make sure we get all the metrics
if logger:
logger.finalize("finished")
hpc_save_path = trainer._checkpoint_connector.hpc_save_path(trainer.default_root_dir)
trainer.save_checkpoint(hpc_save_path)
assert os.path.exists(hpc_save_path)
# new logger file to get meta
logger = tutils.get_default_logger(tmpdir, version=version)
model = BoringModel()
class _StartCallback(Callback):
# set the epoch start hook so we can predict before the model does the full training
def on_train_epoch_start(self, trainer, model):
assert trainer.global_step == real_global_step and trainer.global_step > 0
# predict with loaded model to make sure answers are the same
mode = model.training
model.eval()
new_pred = model(batch)
assert torch.eq(pred_before_saving, new_pred).all()
model.train(mode)
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
logger=logger,
callbacks=[_StartCallback(), ModelCheckpoint(dirpath=tmpdir)],
)
# by calling fit again, we trigger training, loading weights from the cluster
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
def test_early_stopping_cpu_model(tmpdir):
class ModelTrainVal(BoringModel):
def validation_step(self, *args, **kwargs):
output = super().validation_step(*args, **kwargs)
self.log("val_loss", output["x"])
return output
stopping = EarlyStopping(monitor="val_loss", min_delta=0.1)
trainer_options = dict(
callbacks=[stopping],
default_root_dir=tmpdir,
gradient_clip_val=1.0,
track_grad_norm=2,
enable_progress_bar=False,
accumulate_grad_batches=2,
limit_train_batches=0.1,
limit_val_batches=0.1,
)
model = ModelTrainVal()
tpipes.run_model_test(trainer_options, model)
# test freeze on cpu
model.freeze()
model.unfreeze()
@RunIf(skip_windows=True, sklearn=True)
def test_multi_cpu_model_ddp(tmpdir):
"""Make sure DDP works."""
trainer_options = dict(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.2,
accelerator="cpu",
devices=2,
strategy="ddp_spawn",
)
dm = ClassifDataModule()
model = ClassificationModel()
tpipes.run_model_test(trainer_options, model, data=dm)
def test_lbfgs_cpu_model(tmpdir):
"""Test each of the trainer options.
Testing LBFGS optimizer
"""
class ModelSpecifiedOptimizer(BoringModel):
def __init__(self, optimizer_name, learning_rate):
super().__init__()
self.optimizer_name = optimizer_name
self.learning_rate = learning_rate
self.save_hyperparameters()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
enable_progress_bar=False,
limit_train_batches=0.2,
limit_val_batches=0.2,
)
model = ModelSpecifiedOptimizer(optimizer_name="LBFGS", learning_rate=0.004)
tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.01)
def test_default_logger_callbacks_cpu_model(tmpdir):
"""Test each of the trainer options."""
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
gradient_clip_val=1.0,
overfit_batches=0.20,
enable_progress_bar=False,
limit_train_batches=0.01,
limit_val_batches=0.01,
)
model = BoringModel()
tpipes.run_model_test_without_loggers(trainer_options, model, min_acc=0.01)
# test freeze on cpu
model.freeze()
model.unfreeze()
def test_running_test_after_fitting(tmpdir):
"""Verify test() on fitted model."""
class ModelTrainValTest(BoringModel):
def validation_step(self, *args, **kwargs):
output = super().validation_step(*args, **kwargs)
self.log("val_loss", output["x"])
return output
def test_step(self, *args, **kwargs):
output = super().test_step(*args, **kwargs)
self.log("test_loss", output["y"])
return output
model = ModelTrainValTest()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
# logger file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=2,
limit_train_batches=0.4,
limit_val_batches=0.2,
limit_test_batches=0.2,
callbacks=[checkpoint],
logger=logger,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test()
# test we have good test accuracy
tutils.assert_ok_model_acc(trainer, key="test_loss", thr=0.5)
def test_running_test_no_val(tmpdir):
"""Verify `test()` works on a model with no `val_dataloader`.
It performs train and test only
"""
class ModelTrainTest(BoringModel):
def val_dataloader(self):
pass
def test_step(self, *args, **kwargs):
output = super().test_step(*args, **kwargs)
self.log("test_loss", output["y"])
return output
model = ModelTrainTest()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
# logger file to get weights
checkpoint = tutils.init_checkpoint_callback(logger)
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.2,
limit_test_batches=0.2,
callbacks=[checkpoint],
logger=logger,
)
trainer.fit(model)
assert trainer.state.finished, f"Training failed with {trainer.state}"
trainer.test()
# test we have good test accuracy
tutils.assert_ok_model_acc(trainer, key="test_loss")
def test_simple_cpu(tmpdir):
"""Verify continue training session on CPU."""
model = BoringModel()
# fit model
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, limit_val_batches=0.1, limit_train_batches=20)
trainer.fit(model)
# traning complete
assert trainer.state.finished, "amp + ddp model failed to complete"
def test_cpu_model(tmpdir):
"""Make sure model trains on CPU."""
trainer_options = dict(
default_root_dir=tmpdir, enable_progress_bar=False, max_epochs=1, limit_train_batches=4, limit_val_batches=4
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
def test_all_features_cpu_model(tmpdir):
"""Test each of the trainer options."""
trainer_options = dict(
default_root_dir=tmpdir,
gradient_clip_val=1.0,
overfit_batches=0.20,
track_grad_norm=2,
enable_progress_bar=False,
accumulate_grad_batches=2,
max_epochs=1,
limit_train_batches=0.4,
limit_val_batches=0.4,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model, min_acc=0.01)